|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/08.04.26.0007.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | EllipticE[z, m] == (1/EllipticK[m]) (EllipticE[m] EllipticF[z, m] + 
     Subscript[\[Omega], 1] WeierstrassZeta[
       (Subscript[\[Omega], 1] EllipticF[z, m])/EllipticK[m] - 
        Subscript[\[Omega], 3], {Subscript[g, 2], Subscript[g, 3]}] + 
     Subscript[\[Omega], 1] Subscript[\[Eta], 3]) - 
   (Subscript[\[Omega], 1]/EllipticK[m]^2) EllipticF[z, m] 
    Subscript[\[Eta], 1] /; 
 m == InverseEllipticNomeQ[E^((I Pi Subscript[\[Omega], 3])/
      Subscript[\[Omega], 1])] && 
  {Subscript[\[Omega], 1], Subscript[\[Omega], 3]} == 
   WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] && 
  {Subscript[\[Eta], 1], Subscript[\[Eta], 3]} == 
   {WeierstrassZeta[Subscript[\[Omega], 1], {Subscript[g, 2], 
      Subscript[g, 3]}], WeierstrassZeta[Subscript[\[Omega], 3], 
     {Subscript[g, 2], Subscript[g, 3]}]} | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticE", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["EllipticK", "[", "m", "]"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["EllipticK", "[", "m", "]"]]], "-", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", " ", RowBox[List[SubscriptBox["\[Omega]", "1"], SubscriptBox["\[Eta]", "3"]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Omega]", "1"], " "]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], SubscriptBox["\[Eta]", "1"]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Equal]", RowBox[List["InverseEllipticNomeQ", "[", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]]], "]"]]]], "\[And]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Eta]", "1"], ",", SubscriptBox["\[Eta]", "3"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <mi> η </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> - </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["F", "(", RowBox[List["z", "\[VerticalSeparator]", "m"]], ")"]]]], RowBox[List["K", "(", "m", ")"]]], "-", SubscriptBox["\[Omega]", "3"]]], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>    </mtext>  <msub>  <mi> η </mi>  <mn> 1 </mn>  </msub>  </mrow>  <msup>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> m </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> ❘ </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ⩵ </mo>  <mrow>  <msup>  <semantics>  <mi> q </mi>  <annotation-xml encoding='MathML-Content'>  <ci> EllipticNomeQ </ci>  </annotation-xml>  </semantics>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mstyle scriptlevel='0'>  <mo> { </mo>  </mstyle>  <mrow>  <mrow>  <mstyle scriptlevel='0'>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mstyle>  <mo> ( </mo>  <mstyle scriptlevel='0'>  <mrow>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mstyle>  <mstyle scriptlevel='0'>  <mo> ) </mo>  </mstyle>  </mrow>  <mstyle scriptlevel='0'>  <mo> , </mo>  </mstyle>  <mrow>  <mstyle scriptlevel='0'>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mstyle>  <mo> ( </mo>  <mstyle scriptlevel='0'>  <mrow>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mstyle>  <mstyle scriptlevel='0'>  <mo> ) </mo>  </mstyle>  </mrow>  </mrow>  <mstyle scriptlevel='0'>  <mo> } </mo>  </mstyle>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> η </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> η </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mo> { </mo>  <mrow>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> ; </mo>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "1"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation>  </semantics>  <mo> , </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  <mo> ; </mo>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "3"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation>  </semantics>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> EllipticE </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> EllipticE </ci>  <ci> m </ci>  </apply>  <apply>  <ci> EllipticF </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> WeierstrassZeta </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> EllipticF </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <ci> EllipticK </ci>  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> EllipticF </ci>  <ci> z </ci>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <ci> m </ci>  <apply>  <ci> InverseEllipticNomeQ </ci>  <apply>  <exp />  <apply>  <times />  <imaginaryi />  <pi />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <eq />  <list>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list>  <apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </list>  </apply>  <apply>  <eq />  <list>  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> η </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list>  <apply>  <ci> WeierstrassZeta </ci>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 1 </cn>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  <apply>  <ci> WeierstrassZeta </ci>  <apply>  <ci> Subscript </ci>  <ci> ω </ci>  <cn type='integer'> 3 </cn>  </apply>  <list>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> g </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  </list>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticE", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["WeierstrassZeta", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["EllipticK", "[", "m", "]"]]], "-", SubscriptBox["\[Omega]", "3"]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["\[Omega]", "1"], " ", SubscriptBox["\[Eta]", "3"]]]]], RowBox[List["EllipticK", "[", "m", "]"]]], "-", FractionBox[RowBox[List[SubscriptBox["\[Omega]", "1"], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]], " ", SubscriptBox["\[Eta]", "1"]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]], "/;", RowBox[List[RowBox[List["m", "\[Equal]", RowBox[List["InverseEllipticNomeQ", "[", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]]], "]"]]]], "&&", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Eta]", "1"], ",", SubscriptBox["\[Eta]", "3"]]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], ",", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "3"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "}"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |