| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.27.03.0002.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, 
   {Subscript[b, 1], Subscript[b, 2]}, 1] == 
  ((Gamma[Subscript[\[Psi], 3]] Product[Gamma[Subscript[b, k]], {k, 1, 2}])/
    Product[Gamma[Subscript[a, k]], {k, 3, 3}]) 
   Sum[(Pochhammer[Subscript[\[Psi], 3], k] 
      HypergeometricPFQExpansionCoefficient[{Subscript[a, 1], 
        Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], 
        Subscript[b, 2]}, k])/(Gamma[Subscript[\[Psi], 3] + Subscript[a, 1] + 
        k] Gamma[Subscript[\[Psi], 3] + Subscript[a, 2] + k]), 
    {k, 0, Infinity}] /; Subscript[\[Psi], 3] == 
   Subscript[b, 1] + Subscript[b, 2] - Subscript[a, 1] - Subscript[a, 2] - 
    Subscript[a, 3] && Re[Subscript[\[Psi], 3]] > 0 && Re[Subscript[a, 3]] > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["\[Psi]", "3"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "2"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "3"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], ",", "k"]], "]"]], RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["a", "1"], "+", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["a", "2"], "+", "k"]], "]"]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["\[Psi]", "3"], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "3"], "]"]], ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 3 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mrow>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> ℰ </mi>  <mi> k </mi>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Psi]", "3"], ")"]], "k"], Pochhammer], " ", RowBox[List[SubsuperscriptBox["\[ScriptCapitalE]", "k", RowBox[List["(", "3", ")"]]], "(", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]]]], ")"]]]], RowBox[List[RowBox[List["\[CapitalGamma]", "(", RowBox[List["k", "+", SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "3"]]], ")"]], " ", RowBox[List["\[CapitalGamma]", "(", RowBox[List["k", "+", SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "3"]]], ")"]]]]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 3 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mrow>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> ℰ </mi>  <mi> k </mi>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Psi]", "3"], ")"]], "k"], Pochhammer], " ", RowBox[List[SubsuperscriptBox["\[ScriptCapitalE]", "k", RowBox[List["(", "3", ")"]]], "(", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]]]], ")"]]]], RowBox[List[RowBox[List["\[CapitalGamma]", "(", RowBox[List["k", "+", SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "3"]]], ")"]], " ", RowBox[List["\[CapitalGamma]", "(", RowBox[List["k", "+", SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "3"]]], ")"]]]]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> ψ </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["\[Psi]", "3"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "2"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], ",", "k"]], "]"]], " ", RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["aa", "1"], "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["\[Psi]", "3"], "+", SubscriptBox["aa", "2"], "+", "k"]], "]"]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "3"]], "3"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "3"], "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]]]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["\[Psi]", "3"], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["aa", "3"], "]"]], ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |