|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.0080.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(n/3), -((n - 1)/3), -((n - 2)/3)}, {d, d + 1/3}, 1] ==
((3^n Pochhammer[d - 1/3, n])/Pochhammer[3 d - 1, n])
Hypergeometric2F1[-(n/2), -((n - 1)/2), 4/3 - d - n, 4/3] /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["n", "3"]]], ",", RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "3"]]], ",", RowBox[List["-", FractionBox[RowBox[List["n", "-", "2"]], "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["d", ",", RowBox[List["d", "+", FractionBox["1", "3"]]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["3", "n"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["d", "-", FractionBox["1", "3"]]], ",", "n"]], "]"]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["3", "d"]], "-", "1"]], ",", "n"]], "]"]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["n", "2"]]], ",", RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "2"]]], ",", RowBox[List[FractionBox["4", "3"], "-", "d", "-", "n"]], ",", FractionBox["4", "3"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> d </mi> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["n", "3"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "3"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List["n", "-", "2"]], "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["d", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", FractionBox["1", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 3 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["d", "-", FractionBox["1", "3"]]], ")"]], "n"], Pochhammer] </annotation> </semantics> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "d"]], "-", "1"]], ")"]], "n"], Pochhammer] </annotation> </semantics> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> d </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["n", "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox[RowBox[List["n", "-", "1"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["4", "3"], "-", "d", "-", "n"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["4", "3"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <ci> d </ci> <apply> <plus /> <ci> d </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["n_", "3"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["n_", "-", "1"]], ")"]]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["n_", "-", "2"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["d_", ",", RowBox[List["d_", "+", FractionBox["1", "3"]]]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", "n"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["d", "-", FractionBox["1", "3"]]], ",", "n"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["n", "2"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], ",", RowBox[List[FractionBox["4", "3"], "-", "d", "-", "n"]], ",", FractionBox["4", "3"]]], "]"]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["3", " ", "d"]], "-", "1"]], ",", "n"]], "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|