|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.0099.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{a, a + 1/3, a + 2/3}, {2/3, 4/3}, -1] ==
(2/(3 (1 - 3 a))) (2^(-3 a) + Cos[(a + 1/3) Pi]) /; Re[a] < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "3"]]], ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["2", RowBox[List["3", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", "a"]]]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "a"]]], "+", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", FractionBox["1", "3"]]], ")"]], "\[Pi]"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "a", "]"]], "<", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "3"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["2", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["2", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["4", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </list> <list> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <pi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -3 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> a </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "3"]]], ",", RowBox[List["a_", "+", FractionBox["2", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], " ", "a"]]], "+", RowBox[List["Cos", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", FractionBox["1", "3"]]], ")"]], " ", "\[Pi]"]], "]"]]]], ")"]]]], RowBox[List["3", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", "a"]]]], ")"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "a", "]"]], "<", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|