|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.0144.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{m/p, n/q, 1}, {m/p + 1, n/q + 1}, z] ==
((m n)/(n p - m q))
(Sum[Exp[-((2 Pi I k n)/q)] Log[1 - z^(1/q) Exp[(2 Pi I k)/q]],
{k, 0, q - 1}]/z^(n/q) -
Sum[Exp[-((2 Pi I k m)/p)] Log[1 - z^(1/p) Exp[(2 Pi I k)/p]],
{k, 0, p - 1}]/z^(m/p) + q Sum[1/(z^k (n - k q)),
{k, 1, -1 - Floor[-(n/q)]}]) /; Element[m, Integers] && m > 0 &&
Element[n, Integers] && n > 0 && Element[p, Integers] && p > 0 &&
Element[q, Integers] && Inequality[q, Greater, 0 n p, Unequal, m q] &&
m <= p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["m", "p"], ",", FractionBox["n", "q"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["m", "p"], "+", "1"]], ",", RowBox[List[FractionBox["n", "q"], "+", "1"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["m", " ", "n"]], RowBox[List[RowBox[List["n", " ", "p"]], "-", RowBox[List["m", " ", "q"]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "n"]], " ", "/", " ", "q"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "n"]], "q"]]], "]"]], RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "q"]]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "q"], "]"]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "m"]], " ", "/", " ", "p"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "m"]], "p"]]], "]"]], RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "p"]]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "p"], "]"]]]]]], "]"]]]]]]]], "+", RowBox[List["q", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox["n", "q"]]], "]"]]]]], FractionBox[SuperscriptBox["z", RowBox[List["-", "k"]]], RowBox[List["n", "-", RowBox[List["k", " ", "q"]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", ">", "0"]], "\[And]", RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", RowBox[List["0", "n", " ", "p"]], "\[NotEqual]", RowBox[List["m", " ", "q"]]]], "\[And]", RowBox[List["m", "\[LessEqual]", "p"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> m </mi> <mi> p </mi> </mfrac> <mo> , </mo> <mfrac> <mi> n </mi> <mi> q </mi> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mi> m </mi> <mi> p </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> n </mi> <mi> q </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["m", "p"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["n", "q"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["m", "p"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["n", "q"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mi> p </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> p </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> p </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mi> p </mi> </mfrac> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mi> q </mi> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> q </mi> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mi> q </mi> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ≠ </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ≤ </mo> <mi> p </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <ci> m </ci> <ci> n </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> n </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <ci> m </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <ci> n </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> q </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> k </ci> <ci> q </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> q </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <neq /> <ci> p </ci> <apply> <times /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <leq /> <ci> m </ci> <ci> p </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["m_", "p_"], ",", FractionBox["n_", "q_"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["m_", "p_"], "+", "1"]], ",", RowBox[List[FractionBox["n_", "q_"], "+", "1"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", " ", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["-", FractionBox["n", "q"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "n"]], "q"]]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "q"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "q"]]]]]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["-", FractionBox["m", "p"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["p", "-", "1"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k", " ", "m"]], "p"]]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "p"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], "p"]]]]]], "]"]]]]]]]], "+", RowBox[List["q", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox["n", "q"]]], "]"]]]]], FractionBox[SuperscriptBox["z", RowBox[List["-", "k"]]], RowBox[List["n", "-", RowBox[List["k", " ", "q"]]]]]]]]]]], ")"]]]], RowBox[List[RowBox[List["n", " ", "p"]], "-", RowBox[List["m", " ", "q"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", ">", "0"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", RowBox[List["0", " ", "n", " ", "p"]], "\[NotEqual]", RowBox[List["m", " ", "q"]]]], "&&", RowBox[List["m", "\[LessEqual]", "p"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|