Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, a2>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3=-3/2 > For fixed z and a1=-7/2, a2=-7/2, a3=-3/2, b1=2





http://functions.wolfram.com/07.27.03.1199.01









  


  










Input Form





HypergeometricPFQ[{-(7/2), -(7/2), -(3/2)}, {2, 3}, z] == (1/(108056025 Pi^2 z^2)) (128 (-630 - 614789 z + 53370980 z^2 - 78510105 z^3 + 2402234 z^4 + 33553 z^5) EllipticE[1/2 - Sqrt[1 - z]/2]^ 2) + (1/(108056025 Pi^2 z^2)) (128 (630 + 614789 z - 53370980 z^2 + 78510105 z^3 - 2402234 z^4 - 33553 z^5) EllipticE[1/2 - Sqrt[1 - z]/2] EllipticK[1/2 - Sqrt[1 - z]/2]) + (1/(108056025 Pi^2 z^2)) (128 Sqrt[1 - z] (630 + 481544 z - 30080769 z^2 + 36266229 z^3 - 595388 z^4 - 6930 z^5) EllipticE[1/2 - Sqrt[1 - z]/2] EllipticK[1/2 - Sqrt[1 - z]/2]) + (1/(108056025 Pi^2 z^2)) (64 Sqrt[1 - z] (-630 - 481544 z + 30080769 z^2 - 36266229 z^3 + 595388 z^4 + 6930 z^5) EllipticK[1/2 - Sqrt[1 - z]/2]^2) + (1/(108056025 Pi^2 z^2)) (64 (-630 - 481229 z + 37041751 z^2 - 67000995 z^3 + 13169153 z^4 + 18509 z^5) EllipticK[1/2 - Sqrt[1 - z]/2]^ 2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["3", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "3"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["128", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["614789", " ", "z"]], "+", RowBox[List["53370980", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["78510105", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2402234", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33553", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["128", " ", RowBox[List["(", RowBox[List["630", "+", RowBox[List["614789", " ", "z"]], "-", RowBox[List["53370980", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["78510105", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2402234", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["33553", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["128", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["630", "+", RowBox[List["481544", " ", "z"]], "-", RowBox[List["30080769", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["36266229", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["595388", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6930", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["64", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["481544", " ", "z"]], "+", RowBox[List["30080769", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["36266229", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["595388", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6930", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List["64", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["481229", " ", "z"]], "+", RowBox[List["37041751", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["67000995", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13169153", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["18509", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 33553 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2402234 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 78510105 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 53370980 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 614789 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 108056025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 108056025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 33553 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2402234 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 78510105 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 53370980 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 614789 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 108056025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6930 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 595388 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36266229 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 30080769 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 481544 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 108056025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6930 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 595388 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36266229 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30080769 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 481544 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18509 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13169153 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 67000995 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37041751 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 481229 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 630 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 108056025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 33553 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2402234 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 78510105 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 53370980 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 614789 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -630 </cn> </apply> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 108056025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 108056025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -33553 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2402234 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 78510105 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 53370980 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 614789 </cn> <ci> z </ci> </apply> <cn type='integer'> 630 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 108056025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6930 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 595388 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36266229 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30080769 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 481544 </cn> <ci> z </ci> </apply> <cn type='integer'> 630 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 108056025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6930 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 595388 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36266229 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30080769 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 481544 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -630 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 18509 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13169153 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 67000995 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 37041751 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 481229 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -630 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 108056025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["3", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "3"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["128", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["614789", " ", "z"]], "+", RowBox[List["53370980", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["78510105", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2402234", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["33553", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["128", " ", RowBox[List["(", RowBox[List["630", "+", RowBox[List["614789", " ", "z"]], "-", RowBox[List["53370980", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["78510105", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2402234", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["33553", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]]]], RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["128", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["630", "+", RowBox[List["481544", " ", "z"]], "-", RowBox[List["30080769", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["36266229", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["595388", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6930", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]]]], RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["64", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["481544", " ", "z"]], "+", RowBox[List["30080769", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["36266229", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["595388", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6930", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["64", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "630"]], "-", RowBox[List["481229", " ", "z"]], "+", RowBox[List["37041751", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["67000995", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13169153", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["18509", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], "2"]]], "]"]], "2"]]], RowBox[List["108056025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02