Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, a2>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3=-1/2 > For fixed z and a1=-7/2, a2=-7/2, a3=-1/2, b1=7/2





http://functions.wolfram.com/07.27.03.1305.01









  


  










Input Form





HypergeometricPFQ[{-(7/2), -(7/2), -(1/2)}, {7/2, 7/2}, z] == (1225 (Pi^2 + 72 Pi^2 z + 1800 Pi^2 z^2 - 6400 Pi^2 z^3))/ (201326592 (-z)^(5/2)) + (1/(301989888 z^2)) (Sqrt[1 - z] (-66885 - 3270260 z + 217293584 z^2 - 52281360 z^3 - 3961792 z^4 - 90752 z^5)) - (1/(100663296 (-z)^(5/2))) (35 (-427 - 15624 z - 409500 z^2 - 1344000 z^3 + 252000 z^4 + 16128 z^5 + 256 z^6) Log[Sqrt[1 - z] + Sqrt[-z]]) - (1225 (1 + 72 z + 1800 z^2 - 6400 z^3) Log[Sqrt[1 - z] + Sqrt[-z]]^2)/ (33554432 (-z)^(5/2)) + (1225 (1 + 72 z + 1800 z^2 - 6400 z^3) Log[Sqrt[1 - z] + Sqrt[-z]] Log[1 + Sqrt[1 - z] + Sqrt[-z]])/ (16777216 (-z)^(5/2)) + (1225 (1 + 72 z + 1800 z^2 - 6400 z^3) PolyLog[2, -Sqrt[1 - z] - Sqrt[-z]])/(16777216 (-z)^(5/2)) - (1225 (1 + 72 z + 1800 z^2 - 6400 z^3) PolyLog[2, 1 - Sqrt[1 - z] - Sqrt[-z]])/(16777216 (-z)^(5/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["72", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["201326592", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["301989888", " ", SuperscriptBox["z", "2"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66885"]], "-", RowBox[List["3270260", " ", "z"]], "+", RowBox[List["217293584", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["52281360", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["3961792", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["90752", " ", SuperscriptBox["z", "5"]]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["100663296", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], RowBox[List["(", RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "427"]], "-", RowBox[List["15624", " ", "z"]], "-", RowBox[List["409500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1344000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["252000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16128", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["33554432", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6400 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 33554432 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 100663296 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 252000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1344000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 409500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15624 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 427 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6400 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6400 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 201326592 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 90752 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3961792 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52281360 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 217293584 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3270260 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 66885 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 301989888 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6400 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6400 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 33554432 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 100663296 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 252000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1344000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 409500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15624 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -427 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6400 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 201326592 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -90752 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3961792 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52281360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 217293584 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3270260 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -66885 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 301989888 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["72", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["201326592", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66885"]], "-", RowBox[List["3270260", " ", "z"]], "+", RowBox[List["217293584", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["52281360", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["3961792", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["90752", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], RowBox[List["301989888", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "427"]], "-", RowBox[List["15624", " ", "z"]], "-", RowBox[List["409500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1344000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["252000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16128", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["100663296", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["33554432", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["1225", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["72", " ", "z"]], "+", RowBox[List["1800", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02