Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, a2>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3=1 > For fixed z and a1=-7/2, a2=-7/2, a3=1, b1=-5/2





http://functions.wolfram.com/07.27.03.1448.01









  


  










Input Form





HypergeometricPFQ[{-(7/2), -(7/2), 1}, {-(5/2), 3}, -z] == -((28 (18 + 121 z))/(9801 z^2)) + (8 Sqrt[1 + z] (315 + 1960 z + 5185 z^2 + 7638 z^3 + 7141 z^4 + 6508 z^5))/ (49005 z^2) - (56/99) z^(7/2) ArcSinh[Sqrt[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["28", " ", RowBox[List["(", RowBox[List["18", "+", RowBox[List["121", " ", "z"]]]], ")"]]]], RowBox[List["9801", " ", SuperscriptBox["z", "2"]]]]]], "+", FractionBox[RowBox[List["8", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["1960", " ", "z"]], "+", RowBox[List["5185", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["7638", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7141", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6508", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], RowBox[List["49005", " ", SuperscriptBox["z", "2"]]]], "-", RowBox[List[FractionBox["56", "99"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 56 </mn> <mn> 99 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 28 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 121 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 18 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 9801 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6508 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7141 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7638 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5185 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1960 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 49005 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 56 <sep /> 99 </cn> </apply> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 121 </cn> <ci> z </ci> </apply> <cn type='integer'> 18 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 9801 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6508 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7141 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7638 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5185 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1960 </cn> <ci> z </ci> </apply> <cn type='integer'> 315 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 49005 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["28", " ", RowBox[List["(", RowBox[List["18", "+", RowBox[List["121", " ", "z"]]]], ")"]]]], RowBox[List["9801", " ", SuperscriptBox["z", "2"]]]]]], "+", FractionBox[RowBox[List["8", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["315", "+", RowBox[List["1960", " ", "z"]], "+", RowBox[List["5185", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["7638", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7141", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6508", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], RowBox[List["49005", " ", SuperscriptBox["z", "2"]]]], "-", RowBox[List[FractionBox["56", "99"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02