Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, a2>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3>=-7/2 > For fixed z and a1=-7/2, a2=-7/2, a3=1 > For fixed z and a1=-7/2, a2=-7/2, a3=1, b1=4





http://functions.wolfram.com/07.27.03.1534.01









  


  










Input Form





HypergeometricPFQ[{-(7/2), -(7/2), 1}, {4, 4}, z] == -((4 (64 + 2704 z + 20449 z^2))/(184041 z^3)) + (1/(8290126845 Pi z^3)) (1024 (88069 + 2639330 z + 15355979 z^2 + 26747804 z^3 + 15355979 z^4 + 2639330 z^5 + 88069 z^6) EllipticE[z]) + (1/(8290126845 Pi z^3)) (512 (-131093 - 3298701 z - 14148345 z^2 - 9169665 z^3 + 13613985 z^4 + 11284953 z^5 + 1803821 z^6 + 45045 z^7) EllipticK[z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["4", ",", "4"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["2704", " ", "z"]], "+", RowBox[List["20449", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["184041", " ", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["8290126845", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["1024", " ", RowBox[List["(", RowBox[List["88069", "+", RowBox[List["2639330", " ", "z"]], "+", RowBox[List["15355979", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["26747804", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["15355979", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2639330", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["88069", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["8290126845", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["512", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "131093"]], "-", RowBox[List["3298701", " ", "z"]], "-", RowBox[List["14148345", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9169665", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13613985", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["11284953", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1803821", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["45045", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20449 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2704 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 64 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 184041 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8290126845 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 88069 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2639330 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15355979 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26747804 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15355979 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2639330 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 88069 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8290126845 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45045 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1803821 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11284953 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13613985 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9169665 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14148345 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3298701 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 131093 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 20449 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2704 </cn> <ci> z </ci> </apply> <cn type='integer'> 64 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 184041 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8290126845 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 88069 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2639330 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15355979 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26747804 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15355979 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2639330 </cn> <ci> z </ci> </apply> <cn type='integer'> 88069 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8290126845 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 45045 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1803821 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11284953 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13613985 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9169665 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14148345 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3298701 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -131093 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["4", ",", "4"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["2704", " ", "z"]], "+", RowBox[List["20449", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["184041", " ", SuperscriptBox["z", "3"]]]]]], "+", FractionBox[RowBox[List["1024", " ", RowBox[List["(", RowBox[List["88069", "+", RowBox[List["2639330", " ", "z"]], "+", RowBox[List["15355979", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["26747804", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["15355979", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2639330", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["88069", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], RowBox[List["8290126845", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], "+", FractionBox[RowBox[List["512", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "131093"]], "-", RowBox[List["3298701", " ", "z"]], "-", RowBox[List["14148345", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9169665", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13613985", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["11284953", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1803821", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["45045", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]], RowBox[List["8290126845", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02