|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-7/2, a2>=-7/2
For fixed z and a1=-7/2, a2=-5/2, a3>=-5/2
For fixed z and a1=-7/2, a2=-5/2, a3=3
For fixed z and a1=-7/2, a2=-5/2, a3=3, b1=2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.3241.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(7/2), -(5/2), 3}, {2, 4}, -z] ==
-((1/(1486485 Pi z^3)) (8 (-80 + 20 z + 17685 z^2 - 949396 z^3 +
1964734 z^4 - 569016 z^5 + 5445 z^6)
EllipticE[(-1 + Sqrt[1 + z])^2/(1 + Sqrt[1 + z])^2])) -
(1/(1486485 Pi z^3)) (8 Sqrt[1 + z] (-80 + 20 z + 17685 z^2 - 949396 z^3 +
1964734 z^4 - 569016 z^5 + 5445 z^6)
EllipticE[(-1 + Sqrt[1 + z])^2/(1 + Sqrt[1 + z])^2]) -
(1/(1486485 Pi z^3)) (16 Sqrt[1 + z] (40 - 15 z - 380460 z^2 +
1602278 z^3 - 1318068 z^4 + 205425 z^5)
EllipticK[(-1 + Sqrt[1 + z])^2/(1 + Sqrt[1 + z])^2]) +
(1/(1486485 Pi z^3)) (16 (-40 + 5 z - 362775 z^2 + 652882 z^3 +
646666 z^4 - 363591 z^5 + 5445 z^6)
EllipticK[(-1 + Sqrt[1 + z])^2/(1 + Sqrt[1 + z])^2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "4"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["20", " ", "z"]], "+", RowBox[List["17685", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["949396", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1964734", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["569016", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["8", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["20", " ", "z"]], "+", RowBox[List["17685", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["949396", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1964734", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["569016", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["16", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["40", "-", RowBox[List["15", " ", "z"]], "-", RowBox[List["380460", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1602278", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1318068", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["205425", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "40"]], "+", RowBox[List["5", " ", "z"]], "-", RowBox[List["362775", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["652882", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["646666", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["363591", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1486485 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5445 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 569016 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1964734 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 949396 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17685 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 80 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5445 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 569016 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1964734 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 949396 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17685 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 80 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1486485 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 205425 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1318068 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1602278 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 380460 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1486485 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5445 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 363591 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 646666 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 652882 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 362775 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1486485 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> </list> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1486485 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5445 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 569016 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1964734 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 949396 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17685 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <ci> z </ci> </apply> <cn type='integer'> -80 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5445 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 569016 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1964734 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 949396 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17685 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <ci> z </ci> </apply> <cn type='integer'> -80 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1486485 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 205425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1318068 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1602278 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 380460 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 40 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1486485 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5445 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 363591 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 646666 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 652882 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 362775 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> <cn type='integer'> -40 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1486485 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "4"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["20", " ", "z"]], "+", RowBox[List["17685", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["949396", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1964734", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["569016", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]], "-", FractionBox[RowBox[List["8", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["20", " ", "z"]], "+", RowBox[List["17685", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["949396", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1964734", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["569016", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], "-", FractionBox[RowBox[List["16", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["40", "-", RowBox[List["15", " ", "z"]], "-", RowBox[List["380460", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1602278", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1318068", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["205425", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], "+", FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "40"]], "+", RowBox[List["5", " ", "z"]], "-", RowBox[List["362775", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["652882", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["646666", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["363591", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5445", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]], "2"]], "]"]]]], RowBox[List["1486485", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|