| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 | 
| Hypergeometric Functions  HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]  Specific values  For integer and half-integer parameters and fixed z  For fixed z and a1=-7/2, a2>=-7/2  For fixed z and a1=-7/2, a2=-5/2, a3>=-5/2  For fixed z and a1=-7/2, a2=-5/2, a3=4  For fixed z and a1=-7/2, a2=-5/2, a3=4, b1=-1/2   |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.27.03.3446.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{-(7/2), -(5/2), 4}, {-(1/2), 5/2}, z] == 
 (-105 + 60251 z - 1616279 z^2 - 5028765 z^3 - 270270 z^4)/(65536 z) - 
  (105 (1 + 50 z - 2100 z^2 - 19840 z^3 + 19315 z^4 + 2574 z^5) 
    Log[1 - Sqrt[z]])/(131072 z^(3/2)) + 
  (105 (1 + 50 z - 2100 z^2 - 19840 z^3 + 19315 z^4 + 2574 z^5) 
    Log[1 + Sqrt[z]])/(131072 z^(3/2)) + 
  (33075 z^(3/2) (10 + 11 z) PolyLog[2, -Sqrt[z]])/16384 - 
  (33075 z^(3/2) (10 + 11 z) PolyLog[2, Sqrt[z]])/16384 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["5", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "105"]], "+", RowBox[List["60251", " ", "z"]], "-", RowBox[List["1616279", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5028765", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["270270", " ", SuperscriptBox["z", "4"]]]]], RowBox[List["65536", " ", "z"]]], "-", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["50", " ", "z"]], "-", RowBox[List["2100", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["19840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2574", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["131072", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["50", " ", "z"]], "-", RowBox[List["2100", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["19840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2574", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["131072", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["33075", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["11", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], "16384"], "-", FractionBox[RowBox[List["33075", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["11", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], "16384"]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 5 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["5", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mrow>  <mn> 33075 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 11 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 10 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mn> 16384 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 33075 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 11 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 10 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mn> 16384 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 270270 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5028765 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1616279 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 60251 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 105 </mn>  </mrow>  <mrow>  <mn> 65536 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 105 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2574 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19315 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 19840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2100 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 50 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 131072 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 105 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2574 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19315 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 19840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2100 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 50 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 131072 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  <cn type='integer'> 4 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='rational'> 5 <sep /> 2 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 33075 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 11 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 10 </cn>  </apply>  <apply>  <ci> PolyLog </ci>  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 16384 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 33075 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 11 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 10 </cn>  </apply>  <apply>  <ci> PolyLog </ci>  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 16384 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -270270 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5028765 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1616279 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 60251 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -105 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 65536 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 105 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2574 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19315 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 19840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2100 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 50 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 131072 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 105 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2574 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19315 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 19840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2100 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 50 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 131072 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["5", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "105"]], "+", RowBox[List["60251", " ", "z"]], "-", RowBox[List["1616279", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5028765", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["270270", " ", SuperscriptBox["z", "4"]]]]], RowBox[List["65536", " ", "z"]]], "-", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["50", " ", "z"]], "-", RowBox[List["2100", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["19840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2574", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["131072", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["50", " ", "z"]], "-", RowBox[List["2100", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["19840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2574", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["131072", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["33075", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["11", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], "16384"], "-", FractionBox[RowBox[List["33075", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["11", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], "16384"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |