|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-7/2, a2>=-7/2
For fixed z and a1=-7/2, a2=-5/2, a3>=-5/2
For fixed z and a1=-7/2, a2=-5/2, a3=4
For fixed z and a1=-7/2, a2=-5/2, a3=4, b1=1/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.3458.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(7/2), -(5/2), 4}, {1/2, 5/2}, z] ==
(-105 + 251609 z + 5049611 z^2 + 5726385 z^3 + 180180 z^4)/(262144 z) +
(105 (-1 - 100 z - 13380 z^2 - 14480 z^3 + 26245 z^4 + 1716 z^5)
Log[1 - Sqrt[z]])/(524288 z^(3/2)) -
(105 (-1 - 100 z - 13380 z^2 - 14480 z^3 + 26245 z^4 + 1716 z^5)
Log[1 + Sqrt[z]])/(524288 z^(3/2)) -
(11025 Sqrt[z] (10 + 60 z + 33 z^2) PolyLog[2, -Sqrt[z]])/65536 +
(11025 Sqrt[z] (10 + 60 z + 33 z^2) PolyLog[2, Sqrt[z]])/65536
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "105"]], "+", RowBox[List["251609", " ", "z"]], "+", RowBox[List["5049611", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["5726385", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["180180", " ", SuperscriptBox["z", "4"]]]]], RowBox[List["262144", " ", "z"]]], "+", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["100", " ", "z"]], "-", RowBox[List["13380", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14480", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26245", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["100", " ", "z"]], "-", RowBox[List["13380", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14480", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26245", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["11025", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["60", " ", "z"]], "+", RowBox[List["33", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], "65536"], "+", FractionBox[RowBox[List["11025", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["60", " ", "z"]], "+", RowBox[List["33", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], "65536"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["5", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 180180 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5726385 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5049611 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 251609 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 105 </mn> </mrow> <mrow> <mn> 262144 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 105 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1716 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26245 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13380 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 524288 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 105 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1716 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26245 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13380 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 524288 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 11025 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 10 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 65536 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 11025 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 10 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mn> 65536 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 180180 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5726385 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5049611 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 251609 </cn> <ci> z </ci> </apply> <cn type='integer'> -105 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 262144 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1716 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26245 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 100 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1716 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26245 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 100 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <ci> z </ci> </apply> <cn type='integer'> 10 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 65536 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <ci> z </ci> </apply> <cn type='integer'> 10 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 65536 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["5", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "105"]], "+", RowBox[List["251609", " ", "z"]], "+", RowBox[List["5049611", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["5726385", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["180180", " ", SuperscriptBox["z", "4"]]]]], RowBox[List["262144", " ", "z"]]], "+", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["100", " ", "z"]], "-", RowBox[List["13380", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14480", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26245", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["105", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["100", " ", "z"]], "-", RowBox[List["13380", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14480", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26245", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["524288", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["11025", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["60", " ", "z"]], "+", RowBox[List["33", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], "65536"], "+", FractionBox[RowBox[List["11025", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["10", "+", RowBox[List["60", " ", "z"]], "+", RowBox[List["33", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], "65536"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|