|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-7/2, a2>=-7/2
For fixed z and a1=-7/2, a2=2, a3>=2
For fixed z and a1=-7/2, a2=2, a3=4
For fixed z and a1=-7/2, a2=2, a3=4, b1=-1/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.8652.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(7/2), 2, 4}, {-(1/2), 3/2}, -z] ==
(1/(131072 (1 + z))) (119872 - 4301216 z - 2646000 Pi^2 z^(3/2) -
46283048 z^2 - 16228800 Pi^2 z^(5/2) - 98475300 z^3 -
27771975 Pi^2 z^(7/2) - 56756700 z^4 - 14189175 Pi^2 z^(9/2)) +
(1/(1572864 (1 + z)^(17/2))) ((-1572864 + 73091072 z + 2009290496 z^2 +
17357290240 z^3 + 77731829040 z^4 + 215454051296 z^5 +
398260846312 z^6 + 508030016326 z^7 + 450999628275 z^8 +
274572655875 z^9 + 109602581235 z^10 + 25890072495 z^11 +
2747547810 z^12) Log[1 + Sqrt[z] - Sqrt[1 + z]]) +
(1/(1572864 (1 + z)^(17/2))) ((1572864 - 73091072 z - 2009290496 z^2 -
17357290240 z^3 - 77731829040 z^4 - 215454051296 z^5 -
398260846312 z^6 - 508030016326 z^7 - 450999628275 z^8 -
274572655875 z^9 - 109602581235 z^10 - 25890072495 z^11 -
2747547810 z^12) Log[1 - Sqrt[z] + Sqrt[1 + z]]) -
(1/(32768 Sqrt[z] (1 + z)^(3/2))) (35 (-80 + 3240 z + 155250 z^2 +
674121 z^3 + 928620 z^4 + 405405 z^5) Log[Sqrt[z] + Sqrt[1 + z]]) +
(1/(1572864 (1 + z)^(17/2))) ((1572864 - 73091072 z - 2009290496 z^2 -
17357290240 z^3 - 77731829040 z^4 - 215454051296 z^5 -
398260846312 z^6 - 508030016326 z^7 - 450999628275 z^8 -
274572655875 z^9 - 109602581235 z^10 - 25890072495 z^11 -
2747547810 z^12) Log[(-1 + Sqrt[z] + Sqrt[1 + z])/
(1 + Sqrt[z] + Sqrt[1 + z])]) -
(11025 (240 z^(3/2) + 1232 z^(5/2) + 1287 z^(7/2))
Log[Sqrt[z] + Sqrt[1 + z]] Log[(-1 + Sqrt[z] + Sqrt[1 + z])/
(1 + Sqrt[z] + Sqrt[1 + z])])/32768 -
(11025 (240 z^(3/2) + 1232 z^(5/2) + 1287 z^(7/2))
PolyLog[2, -(1/(Sqrt[z] + Sqrt[1 + z]))])/32768 +
(11025 (240 z^(3/2) + 1232 z^(5/2) + 1287 z^(7/2))
PolyLog[2, 1/(Sqrt[z] + Sqrt[1 + z])])/32768
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "2", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["131072", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]]], RowBox[List["(", RowBox[List["119872", "-", RowBox[List["4301216", " ", "z"]], "-", RowBox[List["2646000", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["46283048", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["16228800", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["98475300", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["27771975", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["56756700", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14189175", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1572864"]], "+", RowBox[List["73091072", " ", "z"]], "+", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1572864", "-", RowBox[List["73091072", " ", "z"]], "-", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["32768", " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["3240", " ", "z"]], "+", RowBox[List["155250", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["674121", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["928620", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["405405", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1572864", "-", RowBox[List["73091072", " ", "z"]], "-", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "32768"], "-", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "32768"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 131072 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 14189175 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 56756700 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27771975 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 98475300 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16228800 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 46283048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2646000 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4301216 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 119872 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1572864 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2747547810 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25890072495 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 109602581235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 274572655875 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 450999628275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 508030016326 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 398260846312 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 215454051296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 77731829040 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17357290240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2009290496 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 73091072 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1572864 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1572864 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2747547810 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25890072495 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 109602581235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 274572655875 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 450999628275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 508030016326 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 398260846312 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 215454051296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 77731829040 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17357290240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2009290496 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 73091072 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1572864 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 405405 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 928620 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 674121 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 155250 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3240 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 80 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32768 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1572864 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2747547810 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25890072495 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 109602581235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 274572655875 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 450999628275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 508030016326 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 398260846312 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 215454051296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 77731829040 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17357290240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2009290496 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 73091072 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1572864 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 11025 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1287 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 11025 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1287 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 11025 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1287 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 131072 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -14189175 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 56756700 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27771975 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 98475300 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16228800 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 46283048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2646000 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4301216 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 119872 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1572864 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2747547810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25890072495 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 109602581235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 274572655875 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 450999628275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 508030016326 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 398260846312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 215454051296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 77731829040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17357290240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2009290496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 73091072 </cn> <ci> z </ci> </apply> <cn type='integer'> -1572864 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1572864 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2747547810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25890072495 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 109602581235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 274572655875 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 450999628275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 508030016326 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 398260846312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 215454051296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 77731829040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17357290240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2009290496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 73091072 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1572864 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 405405 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 928620 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 674121 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 155250 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3240 </cn> <ci> z </ci> </apply> <cn type='integer'> -80 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1572864 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2747547810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25890072495 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 109602581235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 274572655875 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 450999628275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 508030016326 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 398260846312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 215454051296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 77731829040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17357290240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2009290496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 73091072 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1572864 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1287 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1232 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1287 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1232 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1287 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1232 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "2", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["119872", "-", RowBox[List["4301216", " ", "z"]], "-", RowBox[List["2646000", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["46283048", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["16228800", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["98475300", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["27771975", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["56756700", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14189175", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], RowBox[List["131072", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1572864"]], "+", RowBox[List["73091072", " ", "z"]], "+", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1572864", "-", RowBox[List["73091072", " ", "z"]], "-", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], "-", FractionBox[RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "80"]], "+", RowBox[List["3240", " ", "z"]], "+", RowBox[List["155250", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["674121", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["928620", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["405405", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["32768", " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1572864", "-", RowBox[List["73091072", " ", "z"]], "-", RowBox[List["2009290496", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["17357290240", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["77731829040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["215454051296", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["398260846312", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["508030016326", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["450999628275", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["274572655875", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["109602581235", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["25890072495", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2747547810", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["1572864", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["17", "/", "2"]]]]]], "-", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "32768"], "-", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["11025", " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1232", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "32768"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|