|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-7/2, a2>=-7/2
For fixed z and a1=-7/2, a2=3, a3>=3
For fixed z and a1=-7/2, a2=3, a3=3
For fixed z and a1=-7/2, a2=3, a3=3, b1=1/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.9264.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(7/2), 3, 3}, {1/2, 1/2}, z] ==
(1/(65536 (-1 + z))) (I (65536 I + 126000 Pi^2 Sqrt[z] - 6315472 I z -
3213000 Pi^2 z^(3/2) + 45694656 I z^2 + 15589350 Pi^2 z^(5/2) -
87362100 I z^3 - 24508575 Pi^2 z^(7/2) + 48024900 I z^4 +
12006225 Pi^2 z^(9/2))) - (1/(16384 (-1 + z)^2))
(105 Sqrt[1 - z] (3580 Sqrt[z] - 57680 z^(3/2) + 211029 z^(5/2) -
271530 z^(7/2) + 114345 z^(9/2)) ArcSin[Sqrt[z]]) +
(1/(3145728 (-1 + z)^9)) (Sqrt[1 - z] (3145728 - 586154496 z +
10072712448 z^2 - 74381673920 z^3 + 308251529120 z^4 -
814706546808 z^5 + 1457964186116 z^6 - 1816411731488 z^7 +
1583666606475 z^8 - 950478260325 z^9 + 375027823905 z^10 -
87738301035 z^11 + 9235583280 z^12) Log[1 - E^(I ArcSin[Sqrt[z]])]) +
(1/(3145728 (-1 + z)^9)) (Sqrt[1 - z] (-3145728 + 586154496 z -
10072712448 z^2 + 74381673920 z^3 - 308251529120 z^4 +
814706546808 z^5 - 1457964186116 z^6 + 1816411731488 z^7 -
1583666606475 z^8 + 950478260325 z^9 - 375027823905 z^10 +
87738301035 z^11 - 9235583280 z^12)
Log[(1 - E^(I ArcSin[Sqrt[z]]))/(1 + E^(I ArcSin[Sqrt[z]]))]) +
(1575 (-80 Sqrt[z] + 1960 z^(3/2) - 7938 z^(5/2) + 7623 z^(7/2))
ArcSin[Sqrt[z]] Log[(1 - E^(I ArcSin[Sqrt[z]]))/
(1 + E^(I ArcSin[Sqrt[z]]))])/16384 - (1/(3145728 (-1 + z)^9))
(Sqrt[1 - z] (3145728 - 586154496 z + 10072712448 z^2 - 74381673920 z^3 +
308251529120 z^4 - 814706546808 z^5 + 1457964186116 z^6 -
1816411731488 z^7 + 1583666606475 z^8 - 950478260325 z^9 +
375027823905 z^10 - 87738301035 z^11 + 9235583280 z^12)
Log[1 + E^(I ArcSin[Sqrt[z]])]) +
(1575 I (-80 Sqrt[z] + 1960 z^(3/2) - 7938 z^(5/2) + 7623 z^(7/2))
PolyLog[2, -E^(I ArcSin[Sqrt[z]])])/16384 -
(1575 I (-80 Sqrt[z] + 1960 z^(3/2) - 7938 z^(5/2) + 7623 z^(7/2))
PolyLog[2, E^(I ArcSin[Sqrt[z]])])/16384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["65536", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["65536", " ", "\[ImaginaryI]"]], "+", RowBox[List["126000", " ", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox["z"]]], "-", RowBox[List["6315472", " ", "\[ImaginaryI]", " ", "z"]], "-", RowBox[List["3213000", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["45694656", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15589350", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["87362100", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["24508575", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["48024900", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["12006225", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]], RowBox[List["105", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3580", " ", SqrtBox["z"]]], "-", RowBox[List["57680", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["211029", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["271530", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["114345", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["3145728", "-", RowBox[List["586154496", " ", "z"]], "+", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3145728"]], "+", RowBox[List["586154496", " ", "z"]], "-", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["1575", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], "16384"], "-", RowBox[List[FractionBox["1", RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["3145728", "-", RowBox[List["586154496", " ", "z"]], "+", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["1575", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]]], "]"]]]], "16384"], "-", FractionBox[RowBox[List["1575", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], "16384"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12006225 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48024900 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24508575 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 87362100 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15589350 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45694656 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3213000 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6315472 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 126000 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 105 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 114345 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 271530 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 211029 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 57680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3580 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16384 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3145728 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9235583280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 87738301035 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 375027823905 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 950478260325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1583666606475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1816411731488 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1457964186116 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 814706546808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 308251529120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74381673920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10072712448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 586154496 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3145728 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3145728 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 9235583280 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 87738301035 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 375027823905 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 950478260325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1583666606475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1816411731488 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1457964186116 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 814706546808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 308251529120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 74381673920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10072712448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 586154496 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3145728 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 1575 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7623 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7938 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 80 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mn> 16384 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3145728 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9235583280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 87738301035 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 375027823905 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 950478260325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1583666606475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1816411731488 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1457964186116 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 814706546808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 308251529120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74381673920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10072712448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 586154496 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3145728 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 1575 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7623 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7938 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 80 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 16384 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 1575 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7623 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7938 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 80 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mn> 16384 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> <cn type='integer'> 3 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 12006225 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48024900 </cn> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24508575 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 87362100 </cn> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15589350 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45694656 </cn> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3213000 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6315472 </cn> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 126000 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 65536 </cn> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 114345 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 271530 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 211029 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 57680 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3580 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3145728 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9235583280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 87738301035 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 375027823905 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 950478260325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1583666606475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1816411731488 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1457964186116 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 814706546808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 308251529120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74381673920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10072712448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 586154496 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3145728 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3145728 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -9235583280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 87738301035 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 375027823905 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 950478260325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1583666606475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1816411731488 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1457964186116 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 814706546808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 308251529120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 74381673920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10072712448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 586154496 </cn> <ci> z </ci> </apply> <cn type='integer'> -3145728 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1575 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 7623 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7938 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 16384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3145728 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9235583280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 87738301035 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 375027823905 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 950478260325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1583666606475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1816411731488 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1457964186116 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 814706546808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 308251529120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74381673920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10072712448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 586154496 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3145728 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1575 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 7623 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7938 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 16384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1575 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 7623 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7938 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 16384 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["65536", " ", "\[ImaginaryI]"]], "+", RowBox[List["126000", " ", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox["z"]]], "-", RowBox[List["6315472", " ", "\[ImaginaryI]", " ", "z"]], "-", RowBox[List["3213000", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["45694656", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15589350", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["87362100", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["24508575", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["48024900", " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["12006225", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], ")"]]]], RowBox[List["65536", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], "-", FractionBox[RowBox[List["105", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3580", " ", SqrtBox["z"]]], "-", RowBox[List["57680", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["211029", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["271530", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["114345", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["3145728", "-", RowBox[List["586154496", " ", "z"]], "+", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3145728"]], "+", RowBox[List["586154496", " ", "z"]], "-", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "+", FractionBox[RowBox[List["1575", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], "16384"], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["3145728", "-", RowBox[List["586154496", " ", "z"]], "+", RowBox[List["10072712448", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74381673920", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["308251529120", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["814706546808", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1457964186116", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1816411731488", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1583666606475", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["950478260325", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["375027823905", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["87738301035", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["9235583280", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], RowBox[List["3145728", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "+", FractionBox[RowBox[List["1575", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]]], "]"]]]], "16384"], "-", FractionBox[RowBox[List["1575", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "80"]], " ", SqrtBox["z"]]], "+", RowBox[List["1960", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["7938", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["7623", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], "16384"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|