![](/common/images/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-7/2, a2>=-7/2
For fixed z and a1=-7/2, a2=3, a3>=3
For fixed z and a1=-7/2, a2=3, a3=4
For fixed z and a1=-7/2, a2=3, a3=4, b1=-5/2
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
http://functions.wolfram.com/07.27.03.9468.01
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
HypergeometricPFQ[{-(7/2), 3, 4}, {-(5/2), 1/2}, -z] ==
(1/(122880 (1 + z)^5)) (122880 - 2926368 z + 20041160 z^2 - 308828780 z^3 -
156080925 Pi^2 z^(7/2) - 2224505140 z^4 - 780404625 Pi^2 z^(9/2) -
5148051480 z^5 - 1560809250 Pi^2 z^(11/2) - 5616138528 z^6 -
1560809250 Pi^2 z^(13/2) - 2982879900 z^7 - 780404625 Pi^2 z^(15/2) -
624323700 z^8 - 156080925 Pi^2 z^(17/2)) + (1/(31457280 (1 + z)^(25/2)))
((-31457280 + 1163071488 z - 2160998400 z^2 + 147795827200 z^3 +
2898457184000 z^4 + 25967581766560 z^5 + 111107988663056 z^6 +
318878655903100 z^7 + 638437752971450 z^8 + 930240084405925 z^9 +
1003668609929615 z^10 + 804469718175823 z^11 + 474115287573375 z^12 +
199997260554000 z^13 + 57244450384800 z^14 + 9972715737600 z^15 +
799136110080 z^16) Log[1 + Sqrt[z] - Sqrt[1 + z]]) +
(1/(31457280 (1 + z)^(25/2))) ((31457280 - 1163071488 z + 2160998400 z^2 -
147795827200 z^3 - 2898457184000 z^4 - 25967581766560 z^5 -
111107988663056 z^6 - 318878655903100 z^7 - 638437752971450 z^8 -
930240084405925 z^9 - 1003668609929615 z^10 - 804469718175823 z^11 -
474115287573375 z^12 - 199997260554000 z^13 - 57244450384800 z^14 -
9972715737600 z^15 - 799136110080 z^16)
Log[1 - Sqrt[z] + Sqrt[1 + z]]) - (1/(2048 (1 + z)^(11/2)))
(7 (1400 Sqrt[z] - 14350 z^(3/2) + 114345 z^(5/2) + 2791932 z^(7/2) +
10896171 z^(9/2) + 18942066 z^(11/2) + 17144127 z^(13/2) +
7927920 z^(15/2) + 1486485 z^(17/2)) Log[Sqrt[z] + Sqrt[1 + z]]) +
(1/(31457280 (1 + z)^(25/2))) ((31457280 - 1163071488 z + 2160998400 z^2 -
147795827200 z^3 - 2898457184000 z^4 - 25967581766560 z^5 -
111107988663056 z^6 - 318878655903100 z^7 - 638437752971450 z^8 -
930240084405925 z^9 - 1003668609929615 z^10 - 804469718175823 z^11 -
474115287573375 z^12 - 199997260554000 z^13 - 57244450384800 z^14 -
9972715737600 z^15 - 799136110080 z^16)
Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])]) -
(10405395 z^(7/2) Log[Sqrt[z] + Sqrt[1 + z]]
Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])])/2048 -
(10405395 z^(7/2) PolyLog[2, -(1/(Sqrt[z] + Sqrt[1 + z]))])/2048 +
(10405395 z^(7/2) PolyLog[2, 1/(Sqrt[z] + Sqrt[1 + z])])/2048
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["122880", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "5"]]]], RowBox[List["(", RowBox[List["122880", "-", RowBox[List["2926368", " ", "z"]], "+", RowBox[List["20041160", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["308828780", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["2224505140", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["780404625", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["5148051480", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1560809250", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["5616138528", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1560809250", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["2982879900", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["780404625", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["624323700", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "31457280"]], "+", RowBox[List["1163071488", " ", "z"]], "-", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["31457280", "-", RowBox[List["1163071488", " ", "z"]], "+", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2048", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["11", "/", "2"]]]]]], RowBox[List["(", RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["1400", " ", SqrtBox["z"]]], "-", RowBox[List["14350", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["114345", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2791932", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["10896171", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["18942066", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["17144127", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["7927920", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1486485", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["31457280", "-", RowBox[List["1163071488", " ", "z"]], "+", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "2048"], "-", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "2048"], "+", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "2048"]]]]]]]
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 10405395 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 2048 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 10405395 </mn> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 2048 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 10405395 </mn> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 2048 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 122880 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 156080925 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 624323700 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 780404625 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2982879900 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1560809250 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5616138528 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1560809250 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5148051480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 780404625 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2224505140 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 156080925 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 308828780 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20041160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2926368 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 122880 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 31457280 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 799136110080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9972715737600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 57244450384800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 199997260554000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 474115287573375 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 804469718175823 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1003668609929615 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 930240084405925 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 638437752971450 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 318878655903100 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 111107988663056 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25967581766560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2898457184000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 147795827200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2160998400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1163071488 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 31457280 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 31457280 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 799136110080 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9972715737600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 57244450384800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 199997260554000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 474115287573375 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 804469718175823 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1003668609929615 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 930240084405925 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 638437752971450 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 318878655903100 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 111107988663056 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25967581766560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2898457184000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 147795827200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2160998400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1163071488 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 31457280 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1486485 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7927920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17144127 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18942066 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10896171 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2791932 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 114345 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14350 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1400 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 31457280 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 799136110080 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9972715737600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 57244450384800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 199997260554000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 474115287573375 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 804469718175823 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1003668609929615 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 930240084405925 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 638437752971450 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 318878655903100 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 111107988663056 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25967581766560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2898457184000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 147795827200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2160998400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1163071488 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 31457280 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10405395 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2048 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10405395 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2048 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10405395 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2048 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 122880 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -156080925 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 624323700 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 780404625 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2982879900 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1560809250 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5616138528 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1560809250 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5148051480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 780404625 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2224505140 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 156080925 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 308828780 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 20041160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2926368 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 122880 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 31457280 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 799136110080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9972715737600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 57244450384800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 199997260554000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 474115287573375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 804469718175823 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1003668609929615 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 930240084405925 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 638437752971450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 318878655903100 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 111107988663056 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25967581766560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2898457184000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 147795827200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2160998400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1163071488 </cn> <ci> z </ci> </apply> <cn type='integer'> -31457280 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 31457280 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -799136110080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9972715737600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 57244450384800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 199997260554000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 474115287573375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 804469718175823 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1003668609929615 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 930240084405925 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 638437752971450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 318878655903100 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 111107988663056 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25967581766560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2898457184000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 147795827200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2160998400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1163071488 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 31457280 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1486485 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7927920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17144127 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18942066 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10896171 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2791932 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 114345 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14350 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 31457280 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -799136110080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9972715737600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 57244450384800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 199997260554000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 474115287573375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 804469718175823 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1003668609929615 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 930240084405925 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 638437752971450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 318878655903100 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 111107988663056 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25967581766560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2898457184000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 147795827200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2160998400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1163071488 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 31457280 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/clear.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| | ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["122880", "-", RowBox[List["2926368", " ", "z"]], "+", RowBox[List["20041160", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["308828780", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["2224505140", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["780404625", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["5148051480", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1560809250", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["5616138528", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1560809250", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["2982879900", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["780404625", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["624323700", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], RowBox[List["122880", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "5"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "31457280"]], "+", RowBox[List["1163071488", " ", "z"]], "-", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["31457280", "-", RowBox[List["1163071488", " ", "z"]], "+", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "-", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["1400", " ", SqrtBox["z"]]], "-", RowBox[List["14350", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["114345", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2791932", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["10896171", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["18942066", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["17144127", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["7927920", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1486485", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["2048", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["11", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["31457280", "-", RowBox[List["1163071488", " ", "z"]], "+", RowBox[List["2160998400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["147795827200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2898457184000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["25967581766560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["111107988663056", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["318878655903100", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["638437752971450", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["930240084405925", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1003668609929615", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["804469718175823", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["474115287573375", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["199997260554000", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["57244450384800", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["9972715737600", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["799136110080", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["31457280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "-", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "2048"], "-", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "2048"], "+", FractionBox[RowBox[List["10405395", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "2048"]]]]]]] |
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Date Added to functions.wolfram.com (modification date)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/common/images/spacer.gif) |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|