Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-7/2, a2>=-7/2 > For fixed z and a1=-7/2, a2=3, a3>=3 > For fixed z and a1=-7/2, a2=3, a3=4 > For fixed z and a1=-7/2, a2=3, a3=4, b1=-5/2





http://functions.wolfram.com/07.27.03.9476.01









  


  










Input Form





HypergeometricPFQ[{-(7/2), 3, 4}, {-(5/2), 5/2}, -z] == (1/(3276800 z (1 + z)^3)) (-53760 + 2620480 z - 7876128 z^2 + 33083336 z^3 - 367119324 z^4 - 156080925 Pi^2 z^(9/2) - 1523349828 z^5 - 468242775 Pi^2 z^(11/2) - 1734232500 z^6 - 468242775 Pi^2 z^(13/2) - 624323700 z^7 - 156080925 Pi^2 z^(15/2)) + (1/(314572800 (1 + z)^(25/2))) ((-647454720 - 3991080960 z - 21024537600 z^2 - 116744588800 z^3 + 2793478932160 z^4 + 10178986694240 z^5 + 52864959360472 z^6 + 148500549861500 z^7 + 296405042581600 z^8 + 430431748306655 z^9 + 463021245433810 z^10 + 370136657188382 z^11 + 217621074730500 z^12 + 91603519536375 z^13 + 26168862595050 z^14 + 4551013744200 z^15 + 364106247120 z^16) Log[1 + Sqrt[z] - Sqrt[1 + z]]) + (1/(314572800 (1 + z)^(25/2))) ((647454720 + 3991080960 z + 21024537600 z^2 + 116744588800 z^3 - 2793478932160 z^4 - 10178986694240 z^5 - 52864959360472 z^6 - 148500549861500 z^7 - 296405042581600 z^8 - 430431748306655 z^9 - 463021245433810 z^10 - 370136657188382 z^11 - 217621074730500 z^12 - 91603519536375 z^13 - 26168862595050 z^14 - 4551013744200 z^15 - 364106247120 z^16) Log[1 - Sqrt[z] + Sqrt[1 + z]]) - (1/(163840 z^(3/2) (1 + z)^(7/2))) (21 (-128 - 1648 z + 9240 z^2 - 30030 z^3 + 165165 z^4 + 2491632 z^5 + 5747742 z^6 + 4954950 z^7 + 1486485 z^8) Log[Sqrt[z] + Sqrt[1 + z]]) + (1/(314572800 (1 + z)^(25/2))) ((647454720 + 3991080960 z + 21024537600 z^2 + 116744588800 z^3 - 2793478932160 z^4 - 10178986694240 z^5 - 52864959360472 z^6 - 148500549861500 z^7 - 296405042581600 z^8 - 430431748306655 z^9 - 463021245433810 z^10 - 370136657188382 z^11 - 217621074730500 z^12 - 91603519536375 z^13 - 26168862595050 z^14 - 4551013744200 z^15 - 364106247120 z^16) Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])]) - (6243237 z^(7/2) Log[Sqrt[z] + Sqrt[1 + z]] Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])])/32768 - (6243237 z^(7/2) PolyLog[2, -(1/(Sqrt[z] + Sqrt[1 + z]))])/32768 + (6243237 z^(7/2) PolyLog[2, 1/(Sqrt[z] + Sqrt[1 + z])])/32768










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["3276800", " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "53760"]], "+", RowBox[List["2620480", " ", "z"]], "-", RowBox[List["7876128", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33083336", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["367119324", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["1523349828", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["468242775", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["1734232500", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["468242775", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["624323700", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "647454720"]], "-", RowBox[List["3991080960", " ", "z"]], "-", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["647454720", "+", RowBox[List["3991080960", " ", "z"]], "+", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["163840", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["7", "/", "2"]]]]]], RowBox[List["(", RowBox[List["21", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "128"]], "-", RowBox[List["1648", " ", "z"]], "+", RowBox[List["9240", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["30030", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["165165", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2491632", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5747742", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4954950", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1486485", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["647454720", "+", RowBox[List["3991080960", " ", "z"]], "+", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "32768"], "-", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "32768"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 6243237 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 32768 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 6243237 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 32768 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 6243237 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 32768 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 314572800 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 364106247120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4551013744200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26168862595050 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 91603519536375 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 217621074730500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 370136657188382 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 463021245433810 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 430431748306655 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 296405042581600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 148500549861500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52864959360472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10178986694240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2793478932160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 116744588800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 21024537600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3991080960 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 647454720 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 314572800 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 364106247120 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4551013744200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 26168862595050 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91603519536375 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 217621074730500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 370136657188382 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 463021245433810 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 430431748306655 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 296405042581600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 148500549861500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52864959360472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10178986694240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2793478932160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 116744588800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 21024537600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3991080960 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 647454720 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 314572800 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 364106247120 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4551013744200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 26168862595050 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91603519536375 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 217621074730500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 370136657188382 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 463021245433810 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 430431748306655 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 296405042581600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 148500549861500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52864959360472 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10178986694240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2793478932160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 116744588800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 21024537600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3991080960 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 647454720 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3276800 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 156080925 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 624323700 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 468242775 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1734232500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 468242775 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1523349828 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 156080925 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 367119324 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33083336 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7876128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2620480 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 53760 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 163840 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1486485 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4954950 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5747742 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2491632 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 165165 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 30030 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1648 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 128 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6243237 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6243237 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6243237 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 314572800 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 364106247120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4551013744200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26168862595050 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 91603519536375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 217621074730500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 370136657188382 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 463021245433810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 430431748306655 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 296405042581600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 148500549861500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 52864959360472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10178986694240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2793478932160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 116744588800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21024537600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3991080960 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -647454720 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 314572800 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -364106247120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4551013744200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 26168862595050 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91603519536375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 217621074730500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 370136657188382 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 463021245433810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 430431748306655 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 296405042581600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 148500549861500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52864959360472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10178986694240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2793478932160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 116744588800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21024537600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3991080960 </cn> <ci> z </ci> </apply> <cn type='integer'> 647454720 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 314572800 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -364106247120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4551013744200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 26168862595050 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91603519536375 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 217621074730500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 370136657188382 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 463021245433810 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 430431748306655 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 296405042581600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 148500549861500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52864959360472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10178986694240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2793478932160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 116744588800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21024537600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3991080960 </cn> <ci> z </ci> </apply> <cn type='integer'> 647454720 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3276800 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -156080925 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 624323700 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 468242775 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1734232500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 468242775 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1523349828 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 156080925 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 367119324 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 33083336 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7876128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2620480 </cn> <ci> z </ci> </apply> <cn type='integer'> -53760 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 163840 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1486485 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4954950 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5747742 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2491632 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 165165 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30030 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1648 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -128 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["5", "2"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "53760"]], "+", RowBox[List["2620480", " ", "z"]], "-", RowBox[List["7876128", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33083336", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["367119324", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["1523349828", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["468242775", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["1734232500", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["468242775", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["624323700", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["156080925", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], RowBox[List["3276800", " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "647454720"]], "-", RowBox[List["3991080960", " ", "z"]], "-", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["647454720", "+", RowBox[List["3991080960", " ", "z"]], "+", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "-", FractionBox[RowBox[List["21", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "128"]], "-", RowBox[List["1648", " ", "z"]], "+", RowBox[List["9240", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["30030", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["165165", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2491632", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5747742", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4954950", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1486485", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["163840", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["7", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["647454720", "+", RowBox[List["3991080960", " ", "z"]], "+", RowBox[List["21024537600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116744588800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2793478932160", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["10178986694240", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["52864959360472", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["148500549861500", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["296405042581600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["430431748306655", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["463021245433810", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["370136657188382", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["217621074730500", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["91603519536375", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["26168862595050", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["4551013744200", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["364106247120", " ", SuperscriptBox["z", "16"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["314572800", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], "-", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "32768"], "-", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["6243237", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "32768"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02