Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-5/2, a2>=-5/2 > For fixed z and a1=-5/2, a2=-5/2, a3>=-5/2 > For fixed z and a1=-5/2, a2=-5/2, a3=-5/2 > For fixed z and a1=-5/2, a2=-5/2, a3=-5/2, b1=5/2





http://functions.wolfram.com/07.27.03.a7qc.01









  


  










Input Form





HypergeometricPFQ[{-(5/2), -(5/2), -(5/2)}, {5/2, 7/2}, z] == (Sqrt[1 - z] (-270 - 118305 z + 26280538 z^2 - 32559336 z^3 + 1807088 z^4))/ (33554432 z^2) + (75 (-25 Pi^2 - 1600 Pi^2 z + 14400 Pi^2 z^2 - 6400 Pi^2 z^3 + 128 Pi^2 z^4))/(16777216 (-z)^(3/2)) - (1/(33554432 (-z)^(5/2))) (15 (-18 - 4875 z - 288000 z^2 - 720000 z^3 + 1376000 z^4 - 57088 z^5) Log[Sqrt[1 - z] + Sqrt[-z]]) - (225 (-25 - 1600 z + 14400 z^2 - 6400 z^3 + 128 z^4) Log[Sqrt[1 - z] + Sqrt[-z]]^2)/(8388608 (-z)^(3/2)) + (1/(4194304 (-z)^(3/2))) (225 (-25 - 1600 z + 14400 z^2 - 6400 z^3 + 128 z^4) Log[Sqrt[1 - z] + Sqrt[-z]] Log[1 + Sqrt[1 - z] + Sqrt[-z]]) + (225 (-25 - 1600 z + 14400 z^2 - 6400 z^3 + 128 z^4) PolyLog[2, -Sqrt[1 - z] - Sqrt[-z]])/(4194304 (-z)^(3/2)) - (225 (-25 - 1600 z + 14400 z^2 - 6400 z^3 + 128 z^4) PolyLog[2, 1 - Sqrt[1 - z] - Sqrt[-z]])/(4194304 (-z)^(3/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "270"]], "-", RowBox[List["118305", " ", "z"]], "+", RowBox[List["26280538", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["32559336", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1807088", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["33554432", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["75", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "25"]], " ", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["1600", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["33554432", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], RowBox[List["15", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "18"]], "-", RowBox[List["4875", " ", "z"]], "-", RowBox[List["288000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["720000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1376000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["57088", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["8388608", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8388608 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 57088 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1376000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 720000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 288000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4875 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 18 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 33554432 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4194304 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1807088 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 32559336 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26280538 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 118305 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 270 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 33554432 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 75 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14400 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1600 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4194304 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1600 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4194304 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1600 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -25 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8388608 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -57088 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1376000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 720000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 288000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4875 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -18 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 33554432 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1600 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -25 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1807088 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32559336 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26280538 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 118305 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -270 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 33554432 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 75 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14400 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1600 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1600 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -25 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1600 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -25 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "270"]], "-", RowBox[List["118305", " ", "z"]], "+", RowBox[List["26280538", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["32559336", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1807088", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["33554432", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List["75", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "25"]], " ", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["1600", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["16777216", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["15", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "18"]], "-", RowBox[List["4875", " ", "z"]], "-", RowBox[List["288000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["720000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1376000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["57088", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["33554432", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["8388608", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25"]], "-", RowBox[List["1600", " ", "z"]], "+", RowBox[List["14400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["4194304", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02