Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-5/2, a2>=-5/2 > For fixed z and a1=-5/2, a2=-5/2, a3>=-5/2 > For fixed z and a1=-5/2, a2=-5/2, a3=1 > For fixed z and a1=-5/2, a2=-5/2, a3=1, b1=4





http://functions.wolfram.com/07.27.03.a81s.01









  


  










Input Form





HypergeometricPFQ[{-(5/2), -(5/2), 1}, {4, 4}, z] == -((4 (64 + 1936 z + 9801 z^2))/(53361 z^3)) + (4096 (1627 + 34031 z + 128182 z^2 + 128182 z^3 + 34031 z^4 + 1627 z^5) EllipticE[z])/(184895865 Pi z^3) + (1/(184895865 Pi z^3)) (512 (-9551 - 161790 z - 384361 z^2 + 85948 z^3 + 368847 z^4 + 97442 z^5 + 3465 z^6) EllipticK[z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["4", ",", "4"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["1936", " ", "z"]], "+", RowBox[List["9801", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["53361", " ", SuperscriptBox["z", "3"]]]]]], "+", FractionBox[RowBox[List["4096", " ", RowBox[List["(", RowBox[List["1627", "+", RowBox[List["34031", " ", "z"]], "+", RowBox[List["128182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["128182", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["34031", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1627", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], RowBox[List["184895865", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["184895865", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["512", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9551"]], "-", RowBox[List["161790", " ", "z"]], "-", RowBox[List["384361", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["85948", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["368847", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["97442", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3465", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9801 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1936 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 64 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 53361 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 4096 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1627 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 34031 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 128182 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 128182 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 34031 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1627 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 184895865 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 512 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3465 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 97442 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 368847 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 85948 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 384361 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 161790 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 9551 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 184895865 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 9801 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1936 </cn> <ci> z </ci> </apply> <cn type='integer'> 64 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 53361 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1627 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 34031 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128182 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128182 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 34031 </cn> <ci> z </ci> </apply> <cn type='integer'> 1627 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 184895865 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3465 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 97442 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 368847 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 85948 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 384361 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 161790 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -9551 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 184895865 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["4", ",", "4"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["1936", " ", "z"]], "+", RowBox[List["9801", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], RowBox[List["53361", " ", SuperscriptBox["z", "3"]]]]]], "+", FractionBox[RowBox[List["4096", " ", RowBox[List["(", RowBox[List["1627", "+", RowBox[List["34031", " ", "z"]], "+", RowBox[List["128182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["128182", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["34031", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1627", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], RowBox[List["184895865", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], "+", FractionBox[RowBox[List["512", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9551"]], "-", RowBox[List["161790", " ", "z"]], "-", RowBox[List["384361", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["85948", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["368847", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["97442", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3465", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]], RowBox[List["184895865", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02