|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-5/2, a2>=-5/2
For fixed z and a1=-5/2, a2=-1/2, a3>=-1/2
For fixed z and a1=-5/2, a2=-1/2, a3=3/2
For fixed z and a1=-5/2, a2=-1/2, a3=3/2, b1=7/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.a9ta.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(5/2), -(1/2), 3/2}, {7/2, 7/2}, z] ==
(75 (-Pi^2 - 10 Pi^2 z))/(32768 (-z)^(5/2)) +
(Sqrt[1 - z] (4005 + 16720 z + 38964 z^2 + 1952 z^3 - 96 z^4))/
(65536 z^2) - (15 (147 - 250 z - 2400 z^2 - 1600 z^3)
Log[Sqrt[1 - z] + Sqrt[-z]])/(65536 (-z)^(5/2)) -
(225 (-1 - 10 z) Log[Sqrt[1 - z] + Sqrt[-z]]^2)/(16384 (-z)^(5/2)) +
(225 (-1 - 10 z) Log[Sqrt[1 - z] + Sqrt[-z]]
Log[1 + Sqrt[1 - z] + Sqrt[-z]])/(8192 (-z)^(5/2)) +
(225 (-1 - 10 z) PolyLog[2, -Sqrt[1 - z] - Sqrt[-z]])/(8192 (-z)^(5/2)) -
(225 (-1 - 10 z) PolyLog[2, 1 - Sqrt[1 - z] - Sqrt[-z]])/(8192 (-z)^(5/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["75", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["10", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]]]], ")"]]]], RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4005", "+", RowBox[List["16720", " ", "z"]], "+", RowBox[List["38964", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1952", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["96", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["65536", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List["15", " ", RowBox[List["(", RowBox[List["147", "-", RowBox[List["250", " ", "z"]], "-", RowBox[List["2400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1600", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["7", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["7", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 16384 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1600 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 250 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 147 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 75 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32768 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 96 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 38964 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16720 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4005 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 225 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8192 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </list> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 250 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 147 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 75 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -96 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 38964 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16720 </cn> <ci> z </ci> </apply> <cn type='integer'> 4005 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["75", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["10", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]]]], ")"]]]], RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4005", "+", RowBox[List["16720", " ", "z"]], "+", RowBox[List["38964", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1952", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["96", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["65536", " ", SuperscriptBox["z", "2"]]]], "-", FractionBox[RowBox[List["15", " ", RowBox[List["(", RowBox[List["147", "-", RowBox[List["250", " ", "z"]], "-", RowBox[List["2400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1600", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], "2"]]], RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["225", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["10", " ", "z"]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["5", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|