|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=-5/2, a2>=-5/2
For fixed z and a1=-5/2, a2=4, a3>=4
For fixed z and a1=-5/2, a2=4, a3=4
For fixed z and a1=-5/2, a2=4, a3=4, b1=1/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.adjd.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(5/2), 4, 4}, {1/2, 3/2}, z] ==
(1/(393216 (-1 + z)^3)) (-381216 + 441000 I Pi^2 Sqrt[z] + 15762568 z -
7276500 I Pi^2 z^(3/2) - 91246108 z^2 + 31189725 I Pi^2 z^(5/2) +
185094756 z^3 - 54320175 I Pi^2 z^(7/2) - 157216500 z^4 +
41972175 I Pi^2 z^(9/2) + 48024900 z^5 - 12006225 I Pi^2 z^(11/2)) +
(1/(32768 (-1 + z)^4 Sqrt[z])) (5 Sqrt[1 - z] (200 - 77210 z + 867895 z^2 -
2974328 z^3 + 4447338 z^4 - 3064950 z^5 + 800415 z^6) ArcSin[Sqrt[z]]) -
(1/(589824 (-1 + z)^9)) (Sqrt[1 - z] (-589824 + 49307664 z -
626261000 z^2 + 3637181570 z^3 - 12117972990 z^4 + 25797475324 z^5 -
36845657464 z^6 + 35905093020 z^7 - 23646777500 z^8 + 10097513825 z^9 -
2529218790 z^10 + 282608865 z^11) Log[1 - E^(I ArcSin[Sqrt[z]])]) +
(1/(589824 (-1 + z)^9)) (Sqrt[1 - z] (-589824 + 49307664 z -
626261000 z^2 + 3637181570 z^3 - 12117972990 z^4 + 25797475324 z^5 -
36845657464 z^6 + 35905093020 z^7 - 23646777500 z^8 + 10097513825 z^9 -
2529218790 z^10 + 282608865 z^11) Log[(1 - E^(I ArcSin[Sqrt[z]]))/
(1 + E^(I ArcSin[Sqrt[z]]))]) -
(3675 (40 Sqrt[z] - 540 z^(3/2) + 1089 z^(5/2)) ArcSin[Sqrt[z]]
Log[(1 - E^(I ArcSin[Sqrt[z]]))/(1 + E^(I ArcSin[Sqrt[z]]))])/32768 +
(1/(589824 (-1 + z)^9)) (Sqrt[1 - z] (-589824 + 49307664 z -
626261000 z^2 + 3637181570 z^3 - 12117972990 z^4 + 25797475324 z^5 -
36845657464 z^6 + 35905093020 z^7 - 23646777500 z^8 + 10097513825 z^9 -
2529218790 z^10 + 282608865 z^11) Log[1 + E^(I ArcSin[Sqrt[z]])]) -
(3675 I (40 Sqrt[z] - 540 z^(3/2) + 1089 z^(5/2))
PolyLog[2, -E^(I ArcSin[Sqrt[z]])])/32768 +
(3675 I (40 Sqrt[z] - 540 z^(3/2) + 1089 z^(5/2))
PolyLog[2, E^(I ArcSin[Sqrt[z]])])/32768
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["393216", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "3"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "381216"]], "+", RowBox[List["441000", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox["z"]]], "+", RowBox[List["15762568", " ", "z"]], "-", RowBox[List["7276500", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["91246108", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["31189725", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["185094756", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["54320175", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["157216500", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["41972175", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["48024900", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["12006225", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"], " ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List["5", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["200", "-", RowBox[List["77210", " ", "z"]], "+", RowBox[List["867895", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2974328", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4447338", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3064950", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["800415", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["3675", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], "32768"], "+", RowBox[List[FractionBox["1", RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["3675", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["3675", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], "32768"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 393216 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 12006225 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48024900 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 41972175 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157216500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 54320175 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 185094756 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 31189725 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91246108 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7276500 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15762568 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 441000 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 381216 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 32768 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 800415 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3064950 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4447338 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2974328 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 867895 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 77210 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 200 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 589824 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 282608865 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2529218790 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10097513825 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23646777500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35905093020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36845657464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25797475324 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12117972990 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3637181570 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 626261000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49307664 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 589824 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 589824 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 282608865 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2529218790 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10097513825 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23646777500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35905093020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36845657464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25797475324 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12117972990 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3637181570 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 626261000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49307664 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 589824 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3675 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1089 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 540 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 589824 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 282608865 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2529218790 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10097513825 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23646777500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35905093020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36845657464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25797475324 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12117972990 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3637181570 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 626261000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49307664 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 589824 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3675 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1089 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 540 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3675 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1089 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 540 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mn> 32768 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 393216 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -12006225 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48024900 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 41972175 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157216500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 54320175 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 185094756 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 31189725 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91246108 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7276500 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15762568 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 441000 </cn> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -381216 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 800415 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3064950 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4447338 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2974328 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 867895 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 77210 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 200 </cn> </apply> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 589824 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 282608865 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2529218790 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10097513825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23646777500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35905093020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36845657464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25797475324 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12117972990 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3637181570 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 626261000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 49307664 </cn> <ci> z </ci> </apply> <cn type='integer'> -589824 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 589824 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 282608865 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2529218790 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10097513825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23646777500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35905093020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36845657464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25797475324 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12117972990 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3637181570 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 626261000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 49307664 </cn> <ci> z </ci> </apply> <cn type='integer'> -589824 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3675 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1089 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 540 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 589824 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 282608865 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2529218790 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10097513825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23646777500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35905093020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36845657464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25797475324 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12117972990 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3637181570 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 626261000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 49307664 </cn> <ci> z </ci> </apply> <cn type='integer'> -589824 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3675 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1089 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 540 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3675 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1089 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 540 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 32768 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "381216"]], "+", RowBox[List["441000", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox["z"]]], "+", RowBox[List["15762568", " ", "z"]], "-", RowBox[List["7276500", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["91246108", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["31189725", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["185094756", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["54320175", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["157216500", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["41972175", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["48024900", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["12006225", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], RowBox[List["393216", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "3"]]]], "+", FractionBox[RowBox[List["5", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["200", "-", RowBox[List["77210", " ", "z"]], "+", RowBox[List["867895", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2974328", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["4447338", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3064950", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["800415", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"], " ", SqrtBox["z"]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "-", FractionBox[RowBox[List["3675", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "589824"]], "+", RowBox[List["49307664", " ", "z"]], "-", RowBox[List["626261000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3637181570", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12117972990", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["25797475324", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["36845657464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["35905093020", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["23646777500", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10097513825", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["2529218790", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["282608865", " ", SuperscriptBox["z", "11"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], RowBox[List["589824", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], "-", FractionBox[RowBox[List["3675", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]]]], "]"]]]], "32768"], "+", FractionBox[RowBox[List["3675", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["40", " ", SqrtBox["z"]]], "-", RowBox[List["540", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["1089", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]]]]], "]"]]]], "32768"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|