Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-1/2, a2>=-1/2 > For fixed z and a1=-1/2, a2=4, a3>=4 > For fixed z and a1=-1/2, a2=4, a3=4 > For fixed z and a1=-1/2, a2=4, a3=4, b1=7/2





http://functions.wolfram.com/07.27.03.am84.01









  


  










Input Form





HypergeometricPFQ[{-(1/2), 4, 4}, {7/2, 7/2}, -z] == (25 (144 Pi^2 - 1488 Sqrt[z] - 648 Pi^2 z + 6400 z^(3/2) + 4050 Pi^2 z^2 + 44100 z^(5/2) + 11025 Pi^2 z^3))/(2359296 z^(5/2)) + (1/(44236800 z^2 (1 + z)^(19/2))) ((270000 + 1305000 z + 297198182 z^2 - 2549766141 z^3 - 5543038638 z^4 - 16219297305 z^5 - 28677707190 z^6 - 34844250978 z^7 - 29410158486 z^8 - 17025289533 z^9 - 6468647400 z^10 - 1456504075 z^11 - 147577500 z^12) Log[1 + Sqrt[z] - Sqrt[1 + z]]) + (1/(44236800 z^2 (1 + z)^(19/2))) ((-270000 - 1305000 z - 297198182 z^2 + 2549766141 z^3 + 5543038638 z^4 + 16219297305 z^5 + 28677707190 z^6 + 34844250978 z^7 + 29410158486 z^8 + 17025289533 z^9 + 6468647400 z^10 + 1456504075 z^11 + 147577500 z^12) Log[1 - Sqrt[z] + Sqrt[1 + z]]) + (25 (76 - 256 z + 2575 z^2 + 3675 z^3) Log[Sqrt[z] + Sqrt[1 + z]])/ (196608 z^(5/2) Sqrt[1 + z]) + (1/(44236800 z^2 (1 + z)^(19/2))) ((-270000 - 1305000 z - 297198182 z^2 + 2549766141 z^3 + 5543038638 z^4 + 16219297305 z^5 + 28677707190 z^6 + 34844250978 z^7 + 29410158486 z^8 + 17025289533 z^9 + 6468647400 z^10 + 1456504075 z^11 + 147577500 z^12) Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])]) + (25 (16 - 72 z + 450 z^2 + 1225 z^3) Log[Sqrt[z] + Sqrt[1 + z]] Log[(-1 + Sqrt[z] + Sqrt[1 + z])/(1 + Sqrt[z] + Sqrt[1 + z])])/ (65536 z^(5/2)) + (25 (16 - 72 z + 450 z^2 + 1225 z^3) PolyLog[2, -(1/(Sqrt[z] + Sqrt[1 + z]))])/(65536 z^(5/2)) - (25 (16 - 72 z + 450 z^2 + 1225 z^3) PolyLog[2, 1/(Sqrt[z] + Sqrt[1 + z])])/ (65536 z^(5/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["144", " ", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["1488", " ", SqrtBox["z"]]], "-", RowBox[List["648", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["6400", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4050", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["44100", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["11025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["2359296", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["270000", "+", RowBox[List["1305000", " ", "z"]], "+", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "270000"]], "-", RowBox[List["1305000", " ", "z"]], "-", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["76", "-", RowBox[List["256", " ", "z"]], "+", RowBox[List["2575", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3675", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["196608", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "270000"]], "-", RowBox[List["1305000", " ", "z"]], "-", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11025 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 44100 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4050 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 648 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 1488 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2359296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 44236800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 147577500 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1456504075 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6468647400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17025289533 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 29410158486 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 34844250978 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28677707190 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16219297305 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5543038638 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2549766141 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 297198182 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1305000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 270000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 44236800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 147577500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1456504075 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6468647400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17025289533 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 29410158486 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 34844250978 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28677707190 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16219297305 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5543038638 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2549766141 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 297198182 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1305000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 270000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3675 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2575 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 76 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 196608 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 44236800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 147577500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1456504075 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6468647400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17025289533 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 29410158486 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 34844250978 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28677707190 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16219297305 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5543038638 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2549766141 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 297198182 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1305000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 270000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 450 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 450 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 25 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1225 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 450 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 11025 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 44100 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4050 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 648 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1488 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2359296 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 44236800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -147577500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1456504075 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6468647400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17025289533 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 29410158486 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 34844250978 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28677707190 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16219297305 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5543038638 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2549766141 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 297198182 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1305000 </cn> <ci> z </ci> </apply> <cn type='integer'> 270000 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 44236800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 147577500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1456504075 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6468647400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17025289533 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 29410158486 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 34844250978 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28677707190 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16219297305 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5543038638 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2549766141 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 297198182 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1305000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -270000 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3675 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2575 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 256 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 76 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 196608 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 44236800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 147577500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1456504075 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6468647400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17025289533 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 29410158486 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 34844250978 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28677707190 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16219297305 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5543038638 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2549766141 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 297198182 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1305000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -270000 </cn> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 16 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 16 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1225 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 450 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 16 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["144", " ", SuperscriptBox["\[Pi]", "2"]]], "-", RowBox[List["1488", " ", SqrtBox["z"]]], "-", RowBox[List["648", " ", SuperscriptBox["\[Pi]", "2"], " ", "z"]], "+", RowBox[List["6400", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["4050", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["44100", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["11025", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["2359296", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["270000", "+", RowBox[List["1305000", " ", "z"]], "+", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"], "-", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "270000"]], "-", RowBox[List["1305000", " ", "z"]], "-", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["76", "-", RowBox[List["256", " ", "z"]], "+", RowBox[List["2575", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3675", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]]]], RowBox[List["196608", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "270000"]], "-", RowBox[List["1305000", " ", "z"]], "-", RowBox[List["297198182", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2549766141", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5543038638", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16219297305", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["28677707190", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["34844250978", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["29410158486", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["17025289533", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["6468647400", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["1456504075", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["147577500", " ", SuperscriptBox["z", "12"]]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["44236800", " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "-", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List["16", "-", RowBox[List["72", " ", "z"]], "+", RowBox[List["450", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1225", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["1", RowBox[List[SqrtBox["z"], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], RowBox[List["65536", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02