|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=3/2, a2>=3/2
For fixed z and a1=3/2, a2=3/2, a3>=3/2
For fixed z and a1=3/2, a2=3/2, a3=3
For fixed z and a1=3/2, a2=3/2, a3=3, b1=5/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.arhx.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{3/2, 3/2, 3}, {5/2, 7/2}, z] ==
-(135/(32 z^2)) - (45 (3 + z) Log[1 - Sqrt[z]])/(64 z^(5/2)) +
(45 (3 + z) Log[1 + Sqrt[z]])/(64 z^(5/2)) + (45 PolyLog[2, -Sqrt[z]])/
(32 z^(3/2)) - (45 PolyLog[2, Sqrt[z]])/(32 z^(3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["135", RowBox[List["32", " ", SuperscriptBox["z", "2"]]]]]], "-", FractionBox[RowBox[List["45", " ", RowBox[List["(", RowBox[List["3", "+", "z"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["64", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["45", " ", RowBox[List["(", RowBox[List["3", "+", "z"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["64", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["45", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["45", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["7", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 45 </mn> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mn> 135 </mn> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> 3 </cn> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 135 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["7", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["135", RowBox[List["32", " ", SuperscriptBox["z", "2"]]]]]], "-", FractionBox[RowBox[List["45", " ", RowBox[List["(", RowBox[List["3", "+", "z"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SqrtBox["z"]]], "]"]]]], RowBox[List["64", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["45", " ", RowBox[List["(", RowBox[List["3", "+", "z"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox["z"]]], "]"]]]], RowBox[List["64", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List["45", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SqrtBox["z"]]]]], "]"]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["45", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SqrtBox["z"]]], "]"]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|