  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
Hypergeometric Functions
 
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
 
Specific values
 
For integer and half-integer parameters and fixed z
 
For fixed z and a1=3/2, a2>=3/2
 
For fixed z and a1=3/2, a2=3, a3>=3
 
For fixed z and a1=3/2, a2=3, a3=3
 
For fixed z and a1=3/2, a2=3, a3=3, b1=-3/2
 
 | 
 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.27.03.asfs.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQ[{3/2, 3, 3}, {-(3/2), 7/2}, z] == 
 -((5 (576 - 2808 z + 5452 z^2 - 5309 z^3 + 3034 z^4))/(64 (-1 + z)^5 z^2)) - 
  (15 (-192 + 1064 z - 2420 z^2 + 2871 z^3 - 1848 z^4 + 840 z^5) 
    ArcSin[Sqrt[z]])/(64 Sqrt[1 - z] (-1 + z)^5 z^(5/2)) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "3", ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], ",", FractionBox["7", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List["576", "-", RowBox[List["2808", " ", "z"]], "+", RowBox[List["5452", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5309", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3034", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"], " ", SuperscriptBox["z", "2"]]]]]], "-", FractionBox[RowBox[List["15", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "192"]], "+", RowBox[List["1064", " ", "z"]], "-", RowBox[List["2420", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2871", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1848", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["840", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], RowBox[List["64", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mn> 3 </mn>  <mo> , </mo>  <mn> 3 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 7 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["7", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3034 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5309 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5452 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2808 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 576 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 64 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 5 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1848 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2871 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2420 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1064 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 192 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 64 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 5 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='integer'> 3 </cn>  <cn type='integer'> 3 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <cn type='rational'> 7 <sep /> 2 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3034 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5309 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5452 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2808 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 576 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 64 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1848 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2871 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2420 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1064 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -192 </cn>  </apply>  <apply>  <arcsin />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 64 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "3", ",", "3"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], ",", FractionBox["7", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List["576", "-", RowBox[List["2808", " ", "z"]], "+", RowBox[List["5452", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5309", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3034", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"], " ", SuperscriptBox["z", "2"]]]]]], "-", FractionBox[RowBox[List["15", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "192"]], "+", RowBox[List["1064", " ", "z"]], "-", RowBox[List["2420", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2871", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1848", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["840", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], RowBox[List["64", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |