|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=3, a2>=3
For fixed z and a1=3, a2=3, a3>=3
For fixed z and a1=3, a2=3, a3=4
For fixed z and a1=3, a2=3, a3=4, b1=-5/2
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.auw0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{3, 3, 4}, {-(5/2), 3}, -z] ==
(640 + 8832 z + 71168 z^2 + 758272 z^3 - 2352747 z^4 + 771542 z^5 -
9240 z^6)/(640 (1 + z)^9) - (9009 (33 z^(7/2) - 44 z^(9/2) + 8 z^(11/2))
ArcSinh[Sqrt[z]])/(128 (1 + z)^(19/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["640", "+", RowBox[List["8832", " ", "z"]], "+", RowBox[List["71168", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["758272", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2352747", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["771542", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["9240", " ", SuperscriptBox["z", "6"]]]]], RowBox[List["640", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "9"]]]], "-", FractionBox[RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List["33", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["44", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["8", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], RowBox[List["128", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 9240 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 771542 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2352747 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 758272 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 71168 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8832 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 640 </mn> </mrow> <mrow> <mn> 640 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 9009 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 44 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 3 </cn> <cn type='integer'> 3 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -9240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 771542 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2352747 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 758272 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 71168 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8832 </cn> <ci> z </ci> </apply> <cn type='integer'> 640 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 640 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9009 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", "3", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "3"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["640", "+", RowBox[List["8832", " ", "z"]], "+", RowBox[List["71168", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["758272", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2352747", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["771542", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["9240", " ", SuperscriptBox["z", "6"]]]]], RowBox[List["640", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "9"]]]], "-", FractionBox[RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List["33", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["44", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["8", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], RowBox[List["128", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["19", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|