Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=3, a2>=3 > For fixed z and a1=3, a2=7/2, a3>=7/2 > For fixed z and a1=3, a2=7/2, a3=4 > For fixed z and a1=3, a2=7/2, a3=4, b1=-5/2





http://functions.wolfram.com/07.27.03.av0r.01









  


  










Input Form





HypergeometricPFQ[{3, 7/2, 4}, {-(5/2), -(3/2)}, -z] == (1/(640 (1 + z)^14)) (640 + 1792 z + 387968 z^2 + 100219392 z^3 - 6487306112 z^4 + 62757199232 z^5 - 182482203904 z^6 + 191542672464 z^7 - 74033643684 z^8 + 9386028729 z^9 - 267824634 z^10 + 194040 z^11) + (9009 (-16896 z^(7/2) + 395648 z^(9/2) - 2265216 z^(11/2) + 4499440 z^(13/2) - 3436620 z^(15/2) + 991683 z^(17/2) - 93324 z^(19/2) + 1848 z^(21/2)) ArcSinh[Sqrt[z]])/(128 Sqrt[1 + z] (1 + 14 z + 91 z^2 + 364 z^3 + 1001 z^4 + 2002 z^5 + 3003 z^6 + 3432 z^7 + 3003 z^8 + 2002 z^9 + 1001 z^10 + 364 z^11 + 91 z^12 + 14 z^13 + z^14))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", FractionBox["7", "2"], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["3", "2"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["640", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "14"]]]], RowBox[List["(", RowBox[List["640", "+", RowBox[List["1792", " ", "z"]], "+", RowBox[List["387968", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["100219392", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6487306112", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["62757199232", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["182482203904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["191542672464", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["74033643684", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["9386028729", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["267824634", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["194040", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "16896"]], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["395648", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["2265216", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["4499440", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["3436620", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["991683", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["93324", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["1848", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["128", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["14", " ", "z"]], "+", RowBox[List["91", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["364", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1001", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2002", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3003", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["3432", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3003", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2002", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1001", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["364", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["91", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["14", " ", SuperscriptBox["z", "13"]]], "+", SuperscriptBox["z", "14"]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;3&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 640 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 14 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 194040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 267824634 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9386028729 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74033643684 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 191542672464 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 182482203904 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 62757199232 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6487306112 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 100219392 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 387968 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1792 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 640 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 9009 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1848 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 93324 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 991683 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3436620 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4499440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2265216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 395648 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16896 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 128 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 14 </mn> </msup> <mo> + </mo> <mrow> <mn> 14 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 91 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 364 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1001 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2002 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3003 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3432 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3003 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2002 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1001 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 364 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 91 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 3 </cn> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 640 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 14 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 194040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 267824634 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9386028729 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74033643684 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 191542672464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 182482203904 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 62757199232 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6487306112 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 100219392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 387968 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1792 </cn> <ci> z </ci> </apply> <cn type='integer'> 640 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 9009 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1848 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 93324 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 991683 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3436620 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4499440 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2265216 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 395648 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16896 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> <apply> <times /> <cn type='integer'> 14 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 91 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 364 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1001 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2002 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3003 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3432 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3003 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2002 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1001 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 364 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 91 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", FractionBox["7", "2"], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", FractionBox["3", "2"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["640", "+", RowBox[List["1792", " ", "z"]], "+", RowBox[List["387968", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["100219392", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6487306112", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["62757199232", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["182482203904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["191542672464", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["74033643684", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["9386028729", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["267824634", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["194040", " ", SuperscriptBox["z", "11"]]]]], RowBox[List["640", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "14"]]]], "+", FractionBox[RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "16896"]], " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["395648", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["2265216", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["4499440", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["3436620", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["991683", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["93324", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["1848", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], RowBox[List["128", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["14", " ", "z"]], "+", RowBox[List["91", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["364", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1001", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2002", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3003", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["3432", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3003", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2002", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1001", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["364", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["91", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["14", " ", SuperscriptBox["z", "13"]]], "+", SuperscriptBox["z", "14"]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02