
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
Hypergeometric Functions
HypergeometricPFQ[{a1,a2,a3},{b1,b2},z]
Specific values
For integer and half-integer parameters and fixed z
For fixed z and a1=3, a2>=3
For fixed z and a1=3, a2=4, a3>=4
For fixed z and a1=3, a2=4, a3=4
For fixed z and a1=3, a2=4, a3=4, b1=-7/2
|
|

|

|

|

|

|
http://functions.wolfram.com/07.27.03.av3b.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
HypergeometricPFQ[{3, 4, 4}, {-(7/2), 1}, -z] ==
(1/(14336 (1 + z)^13)) (14336 + 382976 z + 5640192 z^2 + 71208960 z^3 +
1524000768 z^4 - 14631907671 z^5 + 26400695044 z^6 - 13932620012 z^7 +
2080557600 z^8 - 58034688 z^9) +
(6435 (-102245 z^(9/2) + 451230 z^(11/2) - 528600 z^(13/2) +
196688 z^(15/2) - 20928 z^(17/2) + 384 z^(19/2)) ArcSinh[Sqrt[z]])/
(2048 Sqrt[1 + z] (1 + 13 z + 78 z^2 + 286 z^3 + 715 z^4 + 1287 z^5 +
1716 z^6 + 1716 z^7 + 1287 z^8 + 715 z^9 + 286 z^10 + 78 z^11 +
13 z^12 + z^13))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["14336", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "13"]]]], RowBox[List["(", RowBox[List["14336", "+", RowBox[List["382976", " ", "z"]], "+", RowBox[List["5640192", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71208960", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1524000768", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14631907671", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["26400695044", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["13932620012", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2080557600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["58034688", " ", SuperscriptBox["z", "9"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["6435", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "102245"]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["451230", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["528600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["196688", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["20928", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["384", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2048", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["13", " ", "z"]], "+", RowBox[List["78", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["286", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["715", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["715", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["286", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["78", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["13", " ", SuperscriptBox["z", "12"]]], "+", SuperscriptBox["z", "13"]]], ")"]]]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 14336 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 13 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 58034688 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2080557600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13932620012 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26400695044 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14631907671 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1524000768 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 71208960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5640192 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 382976 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 14336 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 6435 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 384 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20928 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 196688 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 528600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 451230 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 102245 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 13 </mn> </msup> <mo> + </mo> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 78 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 286 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 715 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1287 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1716 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1716 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1287 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 715 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 286 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 78 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 3 </cn> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 14336 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 13 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -58034688 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2080557600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13932620012 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26400695044 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14631907671 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1524000768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 71208960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5640192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 382976 </cn> <ci> z </ci> </apply> <cn type='integer'> 14336 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 6435 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 384 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20928 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 196688 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 528600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 451230 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 102245 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> <apply> <times /> <cn type='integer'> 13 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 78 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 286 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 715 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1287 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1716 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1716 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1287 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 715 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 286 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 78 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["14336", "+", RowBox[List["382976", " ", "z"]], "+", RowBox[List["5640192", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71208960", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1524000768", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14631907671", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["26400695044", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["13932620012", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2080557600", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["58034688", " ", SuperscriptBox["z", "9"]]]]], RowBox[List["14336", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "13"]]]], "+", FractionBox[RowBox[List["6435", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "102245"]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["451230", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["528600", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["196688", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["20928", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["384", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], RowBox[List["2048", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["13", " ", "z"]], "+", RowBox[List["78", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["286", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["715", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1716", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1287", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["715", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["286", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["78", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["13", " ", SuperscriptBox["z", "12"]]], "+", SuperscriptBox["z", "13"]]], ")"]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|