Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=7/2, a2>=7/2 > For fixed z and a1=7/2, a2=4, a3>=4 > For fixed z and a1=7/2, a2=4, a3=4 > For fixed z and a1=7/2, a2=4, a3=4, b1=-7/2





http://functions.wolfram.com/07.27.03.avax.01









  


  










Input Form





HypergeometricPFQ[{7/2, 4, 4}, {-(7/2), -(5/2)}, -z] == (1/(1280 (1 + z)^17)) (1280 + 13568 z + 157696 z^2 - 8968192 z^3 - 3613721600 z^4 + 347914158080 z^5 - 5293155066368 z^6 + 26175468654464 z^7 - 52170541112768 z^8 + 45218802445960 z^9 - 17009788507140 z^10 + 2568489040689 z^11 - 127196469972 z^12 + 1203858084 z^13) - (9009 (-732160 z^(9/2) + 25658880 z^(11/2) - 233697920 z^(13/2) + 801657920 z^(15/2) - 1187788056 z^(17/2) + 793652860 z^(19/2) - 234017355 z^(21/2) + 27683370 z^(23/2) - 1046760 z^(25/2) + 6864 z^(27/2)) ArcSinh[Sqrt[z]])/ (256 Sqrt[1 + z] (1 + 17 z + 136 z^2 + 680 z^3 + 2380 z^4 + 6188 z^5 + 12376 z^6 + 19448 z^7 + 24310 z^8 + 24310 z^9 + 19448 z^10 + 12376 z^11 + 6188 z^12 + 2380 z^13 + 680 z^14 + 136 z^15 + 17 z^16 + z^17))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["1280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "17"]]]], RowBox[List["(", RowBox[List["1280", "+", RowBox[List["13568", " ", "z"]], "+", RowBox[List["157696", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["8968192", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["3613721600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["347914158080", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5293155066368", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["26175468654464", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["52170541112768", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["45218802445960", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["17009788507140", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["2568489040689", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["127196469972", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["1203858084", " ", SuperscriptBox["z", "13"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "732160"]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["25658880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["233697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["801657920", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["1187788056", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["793652860", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "-", RowBox[List["234017355", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["27683370", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "-", RowBox[List["1046760", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["6864", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["256", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["17", " ", "z"]], "+", RowBox[List["136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["680", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6188", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12376", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["19448", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["24310", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["24310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["19448", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["12376", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["6188", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["2380", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["680", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["136", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["17", " ", SuperscriptBox["z", "16"]]], "+", SuperscriptBox["z", "17"]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1280 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 17 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1203858084 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 127196469972 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2568489040689 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17009788507140 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45218802445960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52170541112768 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26175468654464 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5293155066368 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 347914158080 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3613721600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8968192 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 157696 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13568 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1280 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 9009 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6864 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1046760 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27683370 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 234017355 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 793652860 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1187788056 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 801657920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 233697920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25658880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 732160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 17 </mn> </msup> <mo> + </mo> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 136 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 680 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2380 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6188 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12376 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19448 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24310 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24310 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19448 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12376 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6188 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2380 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 680 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 136 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1280 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 17 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1203858084 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 127196469972 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2568489040689 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17009788507140 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 45218802445960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52170541112768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26175468654464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5293155066368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 347914158080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3613721600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8968192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 157696 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13568 </cn> <ci> z </ci> </apply> <cn type='integer'> 1280 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 9009 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6864 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1046760 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27683370 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 234017355 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 793652860 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1187788056 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 801657920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 233697920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25658880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 732160 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6188 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6188 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "4", ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["1280", "+", RowBox[List["13568", " ", "z"]], "+", RowBox[List["157696", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["8968192", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["3613721600", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["347914158080", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5293155066368", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["26175468654464", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["52170541112768", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["45218802445960", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["17009788507140", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["2568489040689", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["127196469972", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["1203858084", " ", SuperscriptBox["z", "13"]]]]], RowBox[List["1280", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "17"]]]], "-", FractionBox[RowBox[List["9009", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "732160"]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["25658880", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["233697920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["801657920", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["1187788056", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["793652860", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "-", RowBox[List["234017355", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["27683370", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "-", RowBox[List["1046760", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["6864", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], RowBox[List["256", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["17", " ", "z"]], "+", RowBox[List["136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["680", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6188", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["12376", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["19448", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["24310", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["24310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["19448", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["12376", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["6188", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["2380", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["680", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["136", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["17", " ", SuperscriptBox["z", "16"]]], "+", SuperscriptBox["z", "17"]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02