|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.0340.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1/8, 7/8, 1}, {9/8, 15/8}, z] ==
(7/(48 x^7)) ((1 + x^6) (2 ArcTan[x] + Sqrt[2] ArcTan[1 - x^2,
Sqrt[2] x]) - (1 - x^6) (Log[(1 + x)/(1 - x)] +
(1/Sqrt[2]) Log[(1 + Sqrt[2] x + x^2)/(1 - Sqrt[2] x + x^2)])) /;
x == z^(1/8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["7", "8"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "8"], ",", FractionBox["15", "8"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["7", RowBox[List["48", SuperscriptBox["x", "7"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["x", "6"]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["ArcTan", "[", "x", "]"]]]], "+", RowBox[List[SqrtBox["2"], RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"]]], ",", RowBox[List[SqrtBox["2"], "x"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "6"]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", "x"]], RowBox[List["1", "-", "x"]]], "]"]], "+", RowBox[List[FractionBox["1", SqrtBox["2"]], RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "x"]], "+", SuperscriptBox["x", "2"]]], RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "x"]], "+", SuperscriptBox["x", "2"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["x", "\[Equal]", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 9 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 15 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["9", "8"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["15", "8"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 7 </mn> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msup> <mi> x </mi> <mn> 7 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 6 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> , </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> x </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> x </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> x </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> ⩵ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 8 </cn> <cn type='rational'> 7 <sep /> 8 </cn> <cn type='integer'> 1 </cn> </list> <list> <cn type='rational'> 9 <sep /> 8 </cn> <cn type='rational'> 15 <sep /> 8 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arctan /> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> x </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["7", "8"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "8"], ",", FractionBox["15", "8"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["x", "6"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["ArcTan", "[", "x", "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["x", "2"]]], ",", RowBox[List[SqrtBox["2"], " ", "x"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["x", "6"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", "x"]], RowBox[List["1", "-", "x"]]], "]"]], "+", FractionBox[RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", "x"]], "+", SuperscriptBox["x", "2"]]], RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", "x"]], "+", SuperscriptBox["x", "2"]]]], "]"]], SqrtBox["2"]]]], ")"]]]]]], ")"]]]], RowBox[List["48", " ", SuperscriptBox["x", "7"]]]], "/;", RowBox[List["x", "\[Equal]", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|