|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.03.0944.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{5/6, 1, 7/6}, {11/6, 13/6}, -1] == (35/6) (Pi - 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", "1", ",", FractionBox["7", "6"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "6"], ",", FractionBox["13", "6"]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["35", "6"], RowBox[List["(", RowBox[List["\[Pi]", "-", "3"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 13 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "6"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "6"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "6"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["13", "6"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 6 </mn> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 6 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 7 <sep /> 6 </cn> </list> <list> <cn type='rational'> 11 <sep /> 6 </cn> <cn type='rational'> 13 <sep /> 6 </cn> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <plus /> <pi /> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", "1", ",", FractionBox["7", "6"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "6"], ",", FractionBox["13", "6"]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["35", " ", RowBox[List["(", RowBox[List["\[Pi]", "-", "3"]], ")"]]]], "6"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|