|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.04.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DomainAndRange[Function[{{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{Subscript[b, 1], Subscript[b, 2]}, z}, HypergeometricPFQ[
{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{Subscript[b, 1], Subscript[b, 2]}, z]]] ==
PowerProduct[PowerSet[Complexes, 3], PowerSet[Complexes, 2],
Complexes] \[LongRightArrow] Complexes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["DomainAndRange", "[", RowBox[List["Function", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "}"]], ",", " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "]"]], "]"]], " ", "\[Equal]", "\[IndentingNewLine]", RowBox[List[RowBox[List["PowerProduct", "[", RowBox[List[RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", "3"]], "]"]], ",", RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", "2"]], "]"]], ",", "Complexes"]], "]"]], "\[LongRightArrow]", "Complexes"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> * </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> * </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⋆ </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⋆ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> * </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⟶ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ∷ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> ℂ </mi> <mo> ⊗ </mo> <mi> ℂ </mi> <mo> ⊗ </mo> <mi> ℂ </mi> </mrow> <mo> } </mo> </mrow> <mo> ⊗ </mo> <mrow> <mo> { </mo> <mrow> <mi> ℂ </mi> <mo> ⊗ </mo> <mi> ℂ </mi> </mrow> <mo> } </mo> </mrow> <mo> ⊗ </mo> <mi> ℂ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⟶ </mo> <mi> ℂ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportion </ci> <apply> <ci> LongRightArrow </ci> <apply> <ci> Star </ci> <list> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> <apply> <times /> <list> <apply> <ci> Star </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <ci> LongRightArrow </ci> <apply> <ci> CircleTimes </ci> <list> <apply> <ci> CircleTimes </ci> <ci> ℂ </ci> <ci> ℂ </ci> <ci> ℂ </ci> </apply> </list> <list> <apply> <ci> CircleTimes </ci> <ci> ℂ </ci> <ci> ℂ </ci> </apply> </list> <ci> ℂ </ci> </apply> <ci> ℂ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["DomainAndRange", "[", RowBox[List["Function", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "}"]], ",", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["PowerProduct", "[", RowBox[List[RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", "3"]], "]"]], ",", RowBox[List["PowerSet", "[", RowBox[List["Complexes", ",", "2"]], "]"]], ",", "Complexes"]], "]"]], "\[LongRightArrow]", "Complexes"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|