|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.04.0014.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RamificationIndex[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2],
Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z], z, 1] == s /;
Subscript[\[Psi], 2] == Sum[Subscript[b, j], {j, 1, 2}] -
Sum[Subscript[a, j], {j, 1, 3}] == r/s && Element[r, Integers] &&
Element[s - 1, Integers] && s - 1 > 0 && GCD[r, s] == 1 &&
NonTerminatingHypergeometricSeriesQ[{Subscript[a, 1], Subscript[a, 2],
Subscript[a, 3]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], ",", "z", ",", "1"]], "]"]], "\[Equal]", "s"]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "2"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["a", "j"]]]]], "\[Equal]", FractionBox["r", "s"]]], "\[And]", RowBox[List["Element", "[", RowBox[List["r", ",", "Integers"]], "]"]], "\[And]", RowBox[List["Element", "[", RowBox[List[RowBox[List["s", "-", "1"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["s", "-", "1"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["GCD", "[", RowBox[List["r", ",", "s"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List["NonTerminatingHypergeometricSeriesQ", "[", RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ℛ </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]] </annotation> </semantics> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mi> s </mi> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> ψ </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo movablelimits='false'> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo movablelimits='false'> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mi> r </mi> <mi> s </mi> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <mi> r </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> gcd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝒩𝒯 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> ℛ </ci> <ci> z </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> s </ci> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 2 </cn> </uplimit> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <cn type='integer'> 3 </cn> </uplimit> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> r </ci> <integers /> </apply> <apply> <in /> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <eq /> <apply> <gcd /> <ci> r </ci> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> 𝒩𝒯 </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], ",", "z_", ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["s", "/;", RowBox[List[RowBox[List[SubscriptBox["\[Psi]", "2"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "2"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "3"], SubscriptBox["a", "j"]]]]], "\[Equal]", FractionBox["r", "s"]]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["s", "-", "1"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["s", "-", "1"]], ">", "0"]], "&&", RowBox[List[RowBox[List["GCD", "[", RowBox[List["r", ",", "s"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List["NonTerminatingHypergeometricSeriesQ", "[", RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|