Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > General characteristics > Branch points > With respect to z





http://functions.wolfram.com/07.27.04.0015.01









  


  










Input Form





RamificationIndex[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z], z, ComplexInfinity] == Log /; Exists[Subscript[a, i], Subscript[a, j], Element[Subscript[a, i] - Subscript[a, j], Integers] && 1 <= i <= 3 && 1 <= j <= 3 && i != j] && ( !Element[Subscript[a, 1], Rationals] || !Element[Subscript[a, 2], Rationals] || !Element[Subscript[a, 3], Rationals])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], ",", "z", ",", "ComplexInfinity"]], "]"]], "\[Equal]", "Log"]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[Exists]", RowBox[List[SubscriptBox["a", "i"], ",", SubscriptBox["a", "j"]]]], RowBox[List["(", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["a", "j"]]], ",", "Integers"]], "]"]], "\[And]", RowBox[List["1", "\[LessEqual]", "i", "\[LessEqual]", "3"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "3"]], "\[And]", RowBox[List["i", "\[NotEqual]", "j"]]]], ")"]]]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["a", "1"], ",", "Rationals"]], "]"]], "]"]], "\[Or]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["a", "2"], ",", "Rationals"]], "]"]], "]"]], "\[Or]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["a", "3"], ",", "Rationals"]], "]"]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#8475; </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]] </annotation> </semantics> <mo> , </mo> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mi> log </mi> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mo> &#8707; </mo> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> , </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mi> i </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> i </mi> <mo> &#8804; </mo> <mn> 3 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mn> 3 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> i </mi> <mo> &#8800; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#8713; </mo> <semantics> <mi> &#8474; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalQ]&quot;, Function[Rationals]] </annotation> </semantics> </mrow> <mo> &#8744; </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#8713; </mo> <semantics> <mi> &#8474; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalQ]&quot;, Function[Rationals]] </annotation> </semantics> </mrow> <mo> &#8744; </mo> <mrow> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> &#8713; </mo> <semantics> <mi> &#8474; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalQ]&quot;, Function[Rationals]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> &#8475; </ci> <ci> z </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <ci> OverTilde </ci> <infinity /> </apply> </apply> <ci> log </ci> </apply> <apply> <and /> <apply> <exists /> <bvar> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> i </ci> </apply> </bvar> <bvar> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> </bvar> <apply> <and /> <apply> <in /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> </apply> </apply> <integers /> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> i </ci> <cn type='integer'> 3 </cn> </apply> <apply> <leq /> <cn type='integer'> 1 </cn> <ci> j </ci> <cn type='integer'> 3 </cn> </apply> <apply> <neq /> <ci> i </ci> <ci> j </ci> </apply> </apply> </apply> <apply> <or /> <apply> <notin /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <rationals /> </apply> <apply> <notin /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <rationals /> </apply> <apply> <notin /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <rationals /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamificationIndex", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], ",", "z_", ",", "ComplexInfinity"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["Log", "/;", RowBox[List[RowBox[List[SubscriptBox["\[Exists]", RowBox[List[SubscriptBox["a", "i"], ",", SubscriptBox["a", "j"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["a", "i"], "-", SubscriptBox["a", "j"]]], "\[Element]", "Integers"]], "&&", RowBox[List["1", "\[LessEqual]", "i", "\[LessEqual]", "3"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "3"]], "&&", RowBox[List["i", "\[NotEqual]", "j"]]]], ")"]]]], "&&", RowBox[List["(", RowBox[List[RowBox[List["!", RowBox[List[SubscriptBox["a", "1"], "\[Element]", "Rationals"]]]], "||", RowBox[List["!", RowBox[List[SubscriptBox["a", "2"], "\[Element]", "Rationals"]]]], "||", RowBox[List["!", RowBox[List[SubscriptBox["a", "3"], "\[Element]", "Rationals"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29