  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.27.04.0021.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Limit[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]}, 
    {Subscript[b, 1], Subscript[b, 2]}, x + I \[Epsilon]], 
   \[Epsilon] -> Plus[0]] == 
  ((Gamma[Subscript[a, 2] - Subscript[a, 1]] 
      Gamma[Subscript[a, 3] - Subscript[a, 1]] Gamma[Subscript[b, 1]] 
      Gamma[Subscript[b, 2]])/(Gamma[Subscript[a, 2]] Gamma[Subscript[a, 3]] 
      Gamma[Subscript[b, 1] - Subscript[a, 1]] 
      Gamma[Subscript[b, 2] - Subscript[a, 1]])) (-(1/x))^Subscript[a, 1] 
    HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 1] - Subscript[b, 1] + 
       1, Subscript[a, 1] - Subscript[b, 2] + 1}, 
     {Subscript[a, 1] - Subscript[a, 2] + 1, Subscript[a, 1] - 
       Subscript[a, 3] + 1}, 1/x] + 
   ((Gamma[Subscript[a, 1] - Subscript[a, 2]] 
      Gamma[Subscript[a, 3] - Subscript[a, 2]] Gamma[Subscript[b, 1]] 
      Gamma[Subscript[b, 2]])/(Gamma[Subscript[a, 1]] Gamma[Subscript[a, 3]] 
      Gamma[Subscript[b, 1] - Subscript[a, 2]] 
      Gamma[Subscript[b, 2] - Subscript[a, 2]])) (-(1/x))^Subscript[a, 2] 
    HypergeometricPFQ[{Subscript[a, 2], Subscript[a, 2] - Subscript[b, 1] + 
       1, Subscript[a, 2] - Subscript[b, 2] + 1}, 
     {Subscript[a, 2] - Subscript[a, 1] + 1, Subscript[a, 2] - 
       Subscript[a, 3] + 1}, 1/x] + 
   ((Gamma[Subscript[a, 1] - Subscript[a, 3]] 
      Gamma[Subscript[a, 2] - Subscript[a, 3]] Gamma[Subscript[b, 1]] 
      Gamma[Subscript[b, 2]])/(Gamma[Subscript[a, 1]] Gamma[Subscript[a, 2]] 
      Gamma[Subscript[b, 1] - Subscript[a, 3]] 
      Gamma[Subscript[b, 2] - Subscript[a, 3]])) (-(1/x))^Subscript[a, 3] 
    HypergeometricPFQ[{Subscript[a, 3], Subscript[a, 3] - Subscript[b, 1] + 
       1, Subscript[a, 3] - Subscript[b, 2] + 1}, 
     {Subscript[a, 3] - Subscript[a, 1] + 1, Subscript[a, 3] - 
       Subscript[a, 2] + 1}, 1/x] /; 
 ForAll[{j, k}, Element[{j, k}, Integers] && j != k && 1 <= j <= 3 && 
    1 <= k <= 3,  !Element[Subscript[a, j] - Subscript[a, k], Integers]] && 
  x > 1 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", "  ", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"]]], "]"]], "  ", RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], "  ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["a", "1"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], "  ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]], " "]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "2"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["a", "2"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "2"], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]], "]"]], "  ", RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], "  ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "3"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["a", "3"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "3"], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["a", "2"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "\[And]", RowBox[List["j", "\[NotEqual]", "k"]], "\[And]", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "3"]], "\[And]", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "3"]]]]]]], RowBox[List["(", "\[InvisibleSpace]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]], ")"]]]], ")"]]]], "\[And]", RowBox[List["x", ">", "1"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> ϵ </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mrow>  <mo> + </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <mi> x </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> ϵ </mi>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", "x"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mtext>    </mtext>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", "x"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> Γ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "3"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], "+", SubscriptBox["a", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", "x"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mo> ∀ </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> j </mi>  <mo> , </mo>  <mi> k </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> j </mi>  <mo> ≠ </mo>  <mi> k </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mn> 3 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 1 </mn>  <mo> ≤ </mo>  <mi> k </mi>  <mo> ≤ </mo>  <mn> 3 </mn>  </mrow>  </mrow>  </mrow>  </msub>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  </mrow>  <mo> ∉ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> x </mi>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <limit />  <bvar>  <ci> ϵ </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> ϵ </ci>  <apply>  <plus />  <cn type='integer'> 0 </cn>  </apply>  </apply>  </condition>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <apply>  <plus />  <ci> x </ci>  <apply>  <times />  <imaginaryi />  <ci> ϵ </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> Γ </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> Γ </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> Γ </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <forall />  <bvar>  <list>  <ci> j </ci>  <ci> k </ci>  </list>  </bvar>  <bvar>  <apply>  <and />  <apply>  <in />  <list>  <ci> j </ci>  <ci> k </ci>  </list>  <integers />  </apply>  <apply>  <neq />  <ci> j </ci>  <ci> k </ci>  </apply>  <apply>  <leq />  <cn type='integer'> 1 </cn>  <ci> j </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <leq />  <cn type='integer'> 1 </cn>  <ci> k </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </bvar>  <apply>  <notin />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  </apply>  <integers />  </apply>  </apply>  <apply>  <gt />  <ci> x </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["aa", "1"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["aa", "2"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "2"], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "2"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "x"]]], ")"]], SubscriptBox["aa", "3"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "3"], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["bb", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "1"], "+", "1"]], ",", RowBox[List[SubscriptBox["aa", "3"], "-", SubscriptBox["aa", "2"], "+", "1"]]]], "}"]], ",", FractionBox["1", "x"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "3"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["\[ForAll]", RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["j", ",", "k"]], "}"]], "\[Element]", "Integers"]], "&&", RowBox[List["j", "\[NotEqual]", "k"]], "&&", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "3"]], "&&", RowBox[List["1", "\[LessEqual]", "k", "\[LessEqual]", "3"]]]]]]], RowBox[List["(", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", "k"]]], "\[Element]", "Integers"]]]], ")"]]]], "&&", RowBox[List["x", ">", "1"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |