Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] > Identities > Recurrence identities > Consecutive neighbors





http://functions.wolfram.com/07.27.17.0001.01









  


  










Input Form





HypergeometricPFQ[{a, Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z] == (Subscript[B, 1] + Subscript[C, 1] z) HypergeometricPFQ[ {a + 1, Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z] + (Subscript[B, 2] + Subscript[C, 2] z) HypergeometricPFQ[{a + 2, Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z] + (Subscript[B, 3] + Subscript[C, 3] z) HypergeometricPFQ[ {a + 3, Subscript[a, 2], Subscript[a, 3]}, {Subscript[b, 1], Subscript[b, 2]}, z] /; Subscript[B, 1] == ((1 + a) (4 + 3 a - 2 Subscript[b, 1] - 2 Subscript[b, 2]) + Subscript[b, 1] Subscript[b, 2])/ ((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])) && Subscript[C, 1] == ((Subscript[a, 2] - a - 1) (1 - Subscript[a, 3] + a))/ ((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])) && Subscript[B, 2] == ((1 + a) (Subscript[b, 1] + Subscript[b, 2] - 3 a - 5))/ ((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])) && Subscript[C, 2] == ((1 + a) (3 - Subscript[a, 2] - Subscript[a, 3] + 2 a))/ ((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])) && Subscript[B, 3] == ((1 + a) (2 + a))/((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])) && Subscript[C, 3] == -(((a + 1) (a + 2))/((1 + a - Subscript[b, 1]) (1 + a - Subscript[b, 2])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], "z"]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "1"]], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], "z"]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "2"]], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], "z"]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "3"]], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", SubscriptBox["b", "1"]]], "-", RowBox[List["2", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "2"], "-", "a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["a", "3"], "+", "a"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "-", RowBox[List["3", "a"]], "-", "5"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"], "+", RowBox[List["2", " ", "a"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "2"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["b", "2"]]], ")"]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;3&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <ci> a </ci> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "1"]], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "2"]], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "+", "3"]], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", SubscriptBox["bb", "1"]]], "-", RowBox[List["2", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["aa", "2"], "-", "a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["aa", "3"], "+", "a"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "-", RowBox[List["3", " ", "a"]], "-", "5"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "-", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"], "+", RowBox[List["2", " ", "a"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "a"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "2"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "a", "-", SubscriptBox["bb", "2"]]], ")"]]]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29