
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.27.17.0004.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{b, Subscript[b, 2]}, z] == ((Subscript[B, 1] + Subscript[C, 1] z)/z)
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{b - 1, Subscript[b, 2]}, z] + ((Subscript[B, 2] + Subscript[C, 2] z)/z)
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{b - 2, Subscript[b, 2]}, z] + ((Subscript[B, 3] + Subscript[C, 3] z)/z)
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], Subscript[a, 3]},
{b - 3, Subscript[b, 2]}, z] /;
Subscript[B, 1] == ((b - 1) (b - 2) (b - Subscript[b, 2] - 1))/
((1 + Subscript[a, 1] - b) (1 + Subscript[a, 2] - b)
(1 + Subscript[a, 3] - b)) && Subscript[C, 1] ==
((b - 1) ((2 b - 3) (Subscript[a, 1] + Subscript[a, 2] +
Subscript[a, 3]) - Subscript[a, 1] Subscript[a, 2] -
Subscript[a, 1] Subscript[a, 3] - Subscript[a, 2] Subscript[a, 3] - 7 +
9 b - 3 b^2))/((1 + Subscript[a, 1] - b) (1 + Subscript[a, 2] - b)
(1 + Subscript[a, 3] - b)) && Subscript[B, 2] ==
((b - 1) (b - 2) (4 - 2 b + Subscript[b, 2]))/((1 + Subscript[a, 1] - b)
(1 + Subscript[a, 2] - b) (1 + Subscript[a, 3] - b)) &&
Subscript[C, 2] == ((b - 1) (b - 2) (3 b - 6 - Subscript[a, 1] -
Subscript[a, 2] - Subscript[a, 3]))/((1 + Subscript[a, 1] - b)
(1 + Subscript[a, 2] - b) (1 + Subscript[a, 3] - b)) &&
Subscript[B, 3] == ((b - 1) (b - 2) (b - 3))/((1 + Subscript[a, 1] - b)
(1 + Subscript[a, 2] - b) (1 + Subscript[a, 3] - b)) &&
Subscript[C, 3] == -(((b - 1) (b - 2) (b - 3))/((1 + Subscript[a, 1] - b)
(1 + Subscript[a, 2] - b) (1 + Subscript[a, 3] - b)))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["b", ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], "z"]]]]]], "z"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "1"]], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], "z"]]]]]], "z"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "2"]], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], "z"]]]], "z"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "3"]], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]]]]]]]], " ", "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["b", "2"], "-", "1"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b"]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "+", SubscriptBox["a", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]], "-", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "3"]]], "-", RowBox[List[SubscriptBox["a", "2"], " ", SubscriptBox["a", "3"]]], "-", "7", "+", RowBox[List["9", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["2", " ", "b"]], "+", SubscriptBox["b", "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", "b"]], "-", "6", "-", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "-", SubscriptBox["a", "3"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "3"], "-", "b"]], ")"]]]]]]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mi> b </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "-", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["b", "-", "3"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <plus /> <ci> b </ci> <cn type='integer'> -3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -7 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"], ",", SubscriptBox["a_", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "1"], "+", RowBox[List[SubscriptBox["C", "1"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "1"]], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "2"]], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]], "z"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", SubscriptBox["aa", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["b", "-", "3"]], ",", SubscriptBox["bb", "2"]]], "}"]], ",", "z"]], "]"]]]], "z"]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["bb", "2"], "-", "1"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "1"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b"]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"], "+", SubscriptBox["aa", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"]]], "-", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "3"]]], "-", RowBox[List[SubscriptBox["aa", "2"], " ", SubscriptBox["aa", "3"]]], "-", "7", "+", RowBox[List["9", " ", "b"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["2", " ", "b"]], "+", SubscriptBox["bb", "2"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "b"]], "-", "6", "-", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "3"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "3"], "-", "b"]], ")"]]]]]]]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|