|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.27.26.0015.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
((-1 + 8 z) HypergeometricPFQ[{a, a + 1/3, a + 2/3}, {b, 3 a - b + 1/2},
(27 z)/(1 + 4 z)^3])/(1 + 4 z)^(3 a) ==
((3 Gamma[1/2 + 3 a - b] Gamma[b])/(2 Pi Gamma[3 a]))
MeijerG[{{2 - 3 a}, {-3 a + 2 b, 1/3 - a, 1 + 3 a - 2 b}},
{{0, 1/2 - 3 a + b, 4/3 - a, 1 - b}, {}}, z] /; Abs[z] > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["8", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "z"]]]], ")"]], RowBox[List[RowBox[List["-", "3"]], " ", "a"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "3"]]], ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["b", ",", RowBox[List[RowBox[List["3", " ", "a"]], "-", "b", "+", FractionBox["1", "2"]]]]], "}"]], ",", FractionBox[RowBox[List["27", " ", "z"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "z"]]]], ")"]], "3"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["3", " ", "a"]], "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]]]], RowBox[List["2", "\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["3", " ", "a"]], "]"]], " "]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List[FractionBox["1", "3"], "-", "a"]], ",", RowBox[List["1", "+", RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List[FractionBox["1", "2"], "-", RowBox[List["3", " ", "a"]], "+", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "a"]], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> b </mi> <mo> , </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 27 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "3"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["2", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["3", " ", "a"]], "-", "b", "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["27", " ", "z"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", "z"]], "+", "1"]], ")"]], "3"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["4", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "b"]], "-", RowBox[List["3", " ", "a"]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "3"], "-", "a"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", "b"]], "+", "1"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["b", "-", RowBox[List["3", "a"]], "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["4", "3"], "-", "a"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -3 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </list> <list> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 27 </cn> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <times /> <ci> Γ </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <ci> Γ </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <times /> <ci> Γ </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list /> </list> <ci> z </ci> </apply> </apply> </apply> <apply> <gt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["8", " ", "z_"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "z_"]]]], ")"]], RowBox[List[RowBox[List["-", "3"]], " ", "a_"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "3"]]], ",", RowBox[List["a_", "+", FractionBox["2", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["b_", ",", RowBox[List[RowBox[List["3", " ", "a_"]], "-", "b_", "+", FractionBox["1", "2"]]]]], "}"]], ",", FractionBox[RowBox[List["27", " ", "z_"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["4", " ", "z_"]]]], ")"]], "3"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["3", " ", "a"]], "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List[FractionBox["1", "3"], "-", "a"]], ",", RowBox[List["1", "+", RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List[FractionBox["1", "2"], "-", RowBox[List["3", " ", "a"]], "+", "b"]], ",", RowBox[List[FractionBox["4", "3"], "-", "a"]], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["3", " ", "a"]], "]"]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|