|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/04.01.23.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x - 1) Sum[x^(k - 1) y^Floor[(k q)/p], {k, 1, (p - 1)/2}] +
(y - 1) Sum[y^(k - 1) x^Floor[(k p)/q], {k, 1, (q - 1)/2}] ==
x^((p - 1)/2) y^((q - 1)/2) - 1 /; Element[p, Integers] &&
Element[q, Integers] && p > 0 && q > 0 && GCD[p, q] == 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["x", "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], FractionBox[RowBox[List["p", "-", "1"]], "2"]], RowBox[List[SuperscriptBox["x", RowBox[List["k", "-", "1"]]], " ", SuperscriptBox["y", RowBox[List["Floor", "[", FractionBox[RowBox[List["k", " ", "q"]], "p"], "]"]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["y", "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], FractionBox[RowBox[List["q", "-", "1"]], "2"]], RowBox[List[SuperscriptBox["y", RowBox[List["k", "-", "1"]]], " ", SuperscriptBox["x", RowBox[List["Floor", "[", FractionBox[RowBox[List["k", " ", "p"]], "q"], "]"]]]]]]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["x", FractionBox[RowBox[List["p", "-", "1"]], "2"]], " ", SuperscriptBox["y", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]], "-", "1"]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["p", ",", " ", "Integers"]], "]"]], "\[And]", RowBox[List["Element", "[", RowBox[List["q", ",", " ", "Integers"]], "]"]], "\[And]", RowBox[List["p", ">", "0"]], "\[And]", RowBox[List["q", ">", "0"]], "\[And]", RowBox[List[RowBox[List["GCD", "[", RowBox[List["p", ",", "q"]], "]"]], "\[Equal]", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <msup> <mi> x </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> y </mi> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mi> p </mi> </mfrac> <mo> ⌋ </mo> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> y </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <msup> <mi> y </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> x </mi> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ⌋ </mo> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msup> <mi> y </mi> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mi> x </mi> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ∈ </mo> <semantics> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> gcd </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> x </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> y </ci> <apply> <floor /> <apply> <times /> <ci> k </ci> <ci> q </ci> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> y </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <floor /> <apply> <times /> <ci> k </ci> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> y </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> x </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> q </ci> <integers /> </apply> <apply> <eq /> <apply> <gcd /> <ci> p </ci> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["x_", "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], FractionBox[RowBox[List["p_", "-", "1"]], "2"]], RowBox[List[SuperscriptBox["x_", RowBox[List["k_", "-", "1"]]], " ", SuperscriptBox["y_", RowBox[List["Floor", "[", FractionBox[RowBox[List["k_", " ", "q_"]], "p_"], "]"]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["y_", "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], FractionBox[RowBox[List["q_", "-", "1"]], "2"]], RowBox[List[SuperscriptBox["y_", RowBox[List["k_", "-", "1"]]], " ", SuperscriptBox["x_", RowBox[List["Floor", "[", FractionBox[RowBox[List["k_", " ", "p_"]], "q_"], "]"]]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["x", FractionBox[RowBox[List["p", "-", "1"]], "2"]], " ", SuperscriptBox["y", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]], "-", "1"]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["p", ">", "0"]], "&&", RowBox[List["q", ">", "0"]], "&&", RowBox[List[RowBox[List["GCD", "[", RowBox[List["p", ",", "q"]], "]"]], "\[Equal]", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|