Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration





Indefinite integration

Involving only one direct function

>
>
>

Involving one direct function and elementary functions

Involving power function

Involving power

Power arguments

>
>
>
>
>
>

Involving zalpha-1and arguments a z

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a z+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving rational functions

Involving (a z+b)-n

>
>
>
>
>
>
>
>
>
>
>
>

Involving (a z2+b)-n

>
>
>
>
>

Involving (a z2+b z+c)-n

>
>
>
>

Involving algebraic functions

Involving (a z+b)beta

>
>
>
>
>
>

Involving exponential function

Involving exp

Involving ab z cos(c z)

>
>
>
>
>

Involving ab z+e cos(c z)

>
>
>
>

Involving ab z cos(c z+d)

>
>
>
>

Involving ab z+e cos(c z+d)

>
>
>
>

Involving ab zr cos(c z)

>
>
>
>

Involving ab zr+e cos(c z)

>
>
>
>

Involving ab zr+d z cos(c z)

>
>
>
>

Involving ab zr+d z+e cos(c z)

>
>
>
>

Involving ab zr cos(f z+g)

>
>
>
>

Involving ab zr+e cos(f z+g)

>
>
>
>

Involving ab zr+d z cos(f z+g)

>
>
>
>

Involving ab zr+d z+e cos(f z+g)

>
>
>
>

Involving ab z cos(c zr)

>
>
>
>

Involving ab z+e cos(c zr)

>
>
>
>

Involving ab zrcos(c zr)

>
>
>
>
>
>

Involving ab zr+ecos(c zr)

>
>
>
>
>
>

Involving ab zr+d z cos(c zr)

>
>
>
>

Involving ab zr+d z+e cos(c zr)

>
>
>
>

Involving ad z cos(c zr+g)

>
>
>
>

Involving ad z+e cos(c zr+g)

>
>
>
>

Involving ab zrcos(c zr+g)

>
>
>
>
>
>

Involving ab zr+ecos(c zr+g)

>
>
>
>
>
>

Involving ab zr+d z cos(c zr+g)

>
>
>
>

Involving ab zr+d z+e cos(c zr+g)

>
>
>
>

Involving rational functions of exp

Involving (a+b ed z)-n cos(c z+e)

>
>

Involving ep z(a+b ed z)-n cos(c z+e)

>
>

Involving algebraic functions of exp

Involving (a+b ed z)beta cos(c z+e)

>
>

Involving ep z(a+b ed z)beta cos(c z+e)

>
>

Involving exponential function and a power function

Involving exp and power

Involving zalpha-1 eb z cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 eb z+e cos(c z)

>
>
>
>

Involving zalpha-1 eb z cos(c z+d)

>
>
>
>

Involving zalpha-1 eb z+e cos(c z+d)

>
>
>
>

Involving zn eb zr cos(c z)

>
>

Involving zn eb zr+e cos(c z)

>
>

Involving zneb zr+d zcos(c z)

>
>

Involving zneb zr+d z+ecos(c z)

>
>

Involving zn eb zr cos(f z+g)

>
>

Involving zn eb zr+e cos(f z+g)

>
>

Involving zn eb zr+d z cos(f z+g)

>
>

Involving zn eb zr+d z+e cos(f z+g)

>
>

Involving zn eb z cos(c zr)

>
>

Involving zn eb z+e cos(c zr)

>
>

Involving zalpha-1eb zrcos(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+ecos(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zn eb zr+d z cos(c zr)

>
>

Involving zn eb zr+d z+e cos(c zr)

>
>

Involving zn ed z cos(c zr+g)

>
>

Involving zn ed z+e cos(c zr+g)

>
>

Involving zalpha-1eb zrcos(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+ecos(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zn eb zr+d z cos(c zr+g)

>
>

Involving zn eb zr+d z+e cos(c zr+g)

>
>

Involving exponential and algebraic functions

Involving exp and algebraic functions

Involving (a z+b)beta dz

>
>
>
>
>

Arguments involving polynomials

Involving a z2+b z+c

>

Involving a z2+b z

>

Involving a z2+c

>

Arguments involving rational functions

Involving a z2+b/z2

>

Involving a z2+b/z2+c

>

Arguments involving algebraic functions

Involving a z+b z1/2+c

>

Involving a z+b z1/2

>

Involving a zr+c

>
>
>

Arguments involving exponential functions

>
>

Arguments involving trigonometric functions

Involving tan

>
>

Involving cot

>
>

Arguments involving hyperbolic functions

Involving tanh

>
>

Involving coth

>
>

Arguments involving inverse trigonometric functions

Involving sin-1

>
>

Involving cos-1

>
>

Involving tan-1

>
>

Involving cot-1

>
>

Involving csc-1

>
>

Involving sec-1

>
>

Arguments involving inverse hyperbolic functions

Involving sinh-1

>
>

Involving cosh-1

>
>

Involving tanh-1

>
>

Involving coth-1

>
>

Involving csch-1

>
>

Involving sech-1

>
>

Arguments involving polynomials or algebraic functions and power factors

Involving power

Involving zn cos(a zr+b z)

>
>

Involving zn cos(a zr+b z+c)

>
>

Arguments involving polynomials or algebraic functions and factors involving exponential functions

Involving exp

Involving ad z cos(c zr+f z)

>
>
>
>

Involving ad z+e cos(c zr+f z)

>
>
>
>

Involving ab zr cos(c zr+f z)

>
>
>
>

Involving ab zr+e cos(c zr+f z)

>
>
>
>

Involving ab zr+d z cos(c zr+f z)

>
>
>
>

Involving ab zr+d z+e cos(c zr+f z)

>
>
>
>

Involving ad z cos(c zr+f z+g)

>
>
>
>

Involving ad z+e cos(c zr+f z+g)

>
>
>
>

Involving ab zr cos(c zr+f z+g)

>
>
>
>

Involving ab zr+e cos(c zr+f z+g)

>
>
>
>

Involving ab zr+d z cos(c zr+f z+g)

>
>
>
>

Involving ab zr+d z+e cos(c zr+f z+g)

>
>
>
>

Arguments involving polynomials or algebraic functions and factors involving exponential function and a power function

Involving exp and power

Involving zn ed z cos(c zr+f z)

>
>

Involving zn ed z+e cos(c zr+f z)

>
>

Involving zn eb zr cos(c zr+f z)

>
>

Involving zn eb zr+e cos(c zr+f z)

>
>

Involving zn eb zr+d z cos(c zr+f z)

>
>

Involving zn eb zr+d z+e cos(c zr+f z)

>
>

Involving zn ed z cos(c zr+f z+g)

>
>

Involving zn ed z+e cos(c zr+f z+g)

>
>

Involving zn eb zr cos(c zr+f z+g)

>
>

Involving zn eb zr+e cos(c zr+f z+g)

>
>

Involving zn eb zr+d z cos(c zr+f z+g)

>
>

Involving zn eb zr+d z+e cos(c zr+f z+g)

>
>

Involving trigonometric functions

Involving sin

Involving sin(c z)cos(a z)

>
>

Involving sin(c z+d)cos(a z)

>

Involving sin(c z)cos(a z+b)

>

Involving sin(c z+d)cos(a z+b)

>

Involving sin(b zr)cos(c z)

>
>

Involving sin(b zr+e)cos(c z)

>
>

Involving sin(b zr+d z)cos(c z)

>
>

Involving sin(b zr+d z+e)cos(c z)

>
>

Involving sin(b zr) cos(f z+g)

>
>

Involving sin(b zr+e) cos(f z+g)

>
>

Involving sin(b zr+d z) cos(f z+g)

>
>

Involving sin(b zr+d z+e) cos(f z+g)

>
>

Involving sin(b z)cos(c zr)

>
>

Involving sin(d z+e) cos(c zr)

>
>

Involving sin(b zr) cos(c zr)

>
>
>

Involving sin(b zr+e) cos(c zr)

>
>
>

Involving sin(b zr+d z) cos(c zr)

>
>

Involving sin(b zr+d z+e) cos(c zr)

>
>

Involving sin(d z) cos(c zr+g)

>
>

Involving sin(d z+e) cos(c zr+g)

>
>

Involving sin(b zr) cos(c zr+g)

>
>
>

Involving sin(b zr+e) cos(c zr+g)

>
>
>

Involving sin(b zr+d z) cos(c zr+g)

>
>

Involving sin(b zr+d z+e) cos(c zr+g)

>
>

Involving sin(d z) cos(c zr+f z)

>
>

Involving sin(d z+e) cos(c zr+f z)

>
>

Involving sin(b zr) cos(c zr+f z)

>
>

Involving sin(b zr+e) cos(c zr+f z)

>
>

Involving sin(b zr+d z) cos(c zr+f z)

>
>

Involving sin(b zr+d z+e) cos(c zr+f z)

>
>

Involving sin(d z) cos(c zr+f z+g)

>
>

Involving sin(d z+e) cos(c zr+f z+g)

>
>

Involving sin(b zr) cos(c zr+f z+g)

>
>

Involving sin(b zr+e) cos(c zr+f z+g)

>
>

Involving sin(b zr+d z) cos(c zr+f z+g)

>
>

Involving sin(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving powers of sin

Involving sinmu(c z)sin(a z)

>
>
>
>

Involving sinmu(c z+d)cos(a z)

>
>

Involving sinmu(c z)cos(a z+b)

>
>

Involving sinmu(c z+d)cos(a z+b)

>
>

Involving sinm(b zr)cos(c z)

>
>

Involving sinm(b zr+e)cos(c z)

>
>

Involving sinm(b zr+d z)cos(c z)

>
>

Involving sinm(b zr+d z+e)cos(c z)

>
>

Involving sinm(b zr) cos(f z+g)

>
>

Involving sinm(b zr+e) cos(f z+g)

>
>

Involving sinm(b zr+d z) cos(f z+g)

>
>

Involving sinm(b zr+d z+e) cos(f z+g)

>
>

Involving sin(b z)mcos(c zr)

>
>

Involving sinm(d z+e) cos(c zr)

>
>

Involving sinm(b zr) cos(c zr)

>
>
>

Involving sinm(b zr+e) cos(c zr)

>
>
>

Involving sinm(b zr+d z) cos(c zr)

>
>

Involving sinm(b zr+d z+e) cos(c zr)

>
>

Involving sinm(d z) cos(c zr+g)

>
>

Involving sinm(d z+e) cos(c zr+g)

>
>

Involving sinm(b zr) cos(c zr+g)

>
>
>

Involving sinm(b zr+e) cos(c zr+g)

>
>
>

Involving sinm(b zr+d z) cos(c zr+g)

>
>

Involving sinm(b zr+d z+e) cos(c zr+g)

>
>

Involving sinm(d z) cos(c zr+f z)

>
>

Involving sinm(d z+e) cos(c zr+f z)

>
>

Involving sinm(b zr) cos(c zr+f z)

>
>

Involving sinm(b zr+e) cos(c zr+f z)

>
>

Involving sinm(b zr+d z) cos(c zr+f z)

>
>

Involving sinm(b zr+d z+e) cos(c zr+f z)

>
>

Involving sinm(d z) cos(c zr+f z+g)

>
>

Involving sinm(d z+e) cos(c zr+f z+g)

>
>

Involving sinm(b zr) cos(c zr+f z+g)

>
>

Involving sinm(b zr+e) cos(c zr+f z+g)

>
>

Involving sinm(b zr+d z) cos(c zr+f z+g)

>
>

Involving sinm(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of sin

>

Involving rational functions of sin

Involving cos(c z)/a+b sin(d z)

>

Involving (a+b sin(d z))-ncos(c z)

>

Involving cos(c z)/a+b sin2(d z)

>

Involving (a+b sin2(d z))-ncos(c z)

>

Involving sin(e z)cos(c z)/a+b sin(d z)

>

Involving sin(e z)cos(c z)(a+b sin(d z))-n

>

Involving sin(e z)cos(c z)/a+b sin2(d z)

>

Involving sin(e z)cos(c z)(a+b sin2(d z))-n

>

Involving algebraic functions of sin

Involving (a+b sin(d z))beta cos(c z)

>

Involving (a+b sin2(d z))beta cos(c z)

>

Involving sin(e z)cos(c z)(a+b sin(d z))beta

>

Involving sin(e z)cos(c z)(a+b sin2(d z))beta

>

Involving trigonometric and a power functions

Involving sin and power

Involving zalpha-1sin(c z)sin(a z)

>
>
>

Involving zalpha-1sin(c z+d)cos(a z)

>

Involving zalpha-1sin(c z)cos(a z+b)

>

Involving zalpha-1sin(c z+d)cos(a z+b)

>

Involving zn sin(b zr) cos(c z)

>
>

Involving zn sin(b zr+e) cos(c z)

>
>

Involving znsin(b zr+d z)cos(c z)

>
>

Involving znsin(b zr+d z+e)cos(c z)

>
>

Involving zn sin(b zr) cos(f z+g)

>
>

Involving zn sin(b zr+e) cos(f z+g)

>
>

Involving zn sin(b zr+d z) cos(f z+g)

>
>

Involving zn sin(b zr+d z+e) cos(f z+g)

>
>

Involving zn sin(b z) cos(c zr)

>
>

Involving zn sin(d z+e) cos(c zr)

>
>

Involving zalpha-1 sin(b zr) cos(c zr)

>
>
>

Involving zalpha-1 sin(b zr+e) cos(c zr)

>
>
>

Involving zn sin(b zr+d z) cos(c zr)

>
>

Involving zn sin(b zr+d z+e) cos(c zr)

>
>

Involving zn sin(d z) cos(c zr+g)

>
>

Involving zn sin(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 sin(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 sin(b zr+e) cos(c zr+g)

>
>
>

Involving zn sin(b zr+d z) cos(c zr+g)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+g)

>
>

Involving zn sin(d z) cos(c zr+f z)

>
>

Involving zn sin(d z+e) cos(c zr+f z)

>
>

Involving zn sin(b zr) cos(c zr+f z)

>
>

Involving zn sin(b zr+e) cos(c zr+f z)

>
>

Involving zn sin(b zr+d z) cos(c zr+f z)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn sin(d z) cos(c zr+f z+g)

>
>

Involving zn sin(d z+e) cos(c zr+f z+g)

>
>

Involving zn sin(b zr) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+e) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+d z) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving powers of sin and power

Involving zalpha-1sinmu(c z)cos(a z)

>
>

Involving zalpha-1sinmu(c z+d)cos(a z)

>
>

Involving zalpha-1sinmu(c z)cos(a z+b)

>
>

Involving zalpha-1sinmu(c z+d)cos(a z+b)

>
>

Involving zn sinm(b zr) cos(c z)

>
>

Involving zn sinm(b zr+e) cos(c z)

>
>

Involving znsinm(b zr+d z)cos(c z)

>
>

Involving znsinm(b zr+d z+e)cos(c z)

>
>

Involving zn sinm(b zr) cos(f z+g)

>
>

Involving zn sinm(b zr+e) cos(f z+g)

>
>

Involving zn sinm(b zr+d z) cos(f z+g)

>
>

Involving zn sinm(b zr+d z+e) cos(f z+g)

>
>

Involving zn sinm(d z+e) cos(c zr)

>
>

Involving zn sinm(d z+e) cos(c zr)

>
>

Involving zalpha-1 sinm(b zr) cos(c zr)

>
>
>

Involving zalpha-1 sinm(b zr+e) cos(c zr)

>
>
>

Involving zn sinm(b zr+d z) cos(c zr)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr)

>
>

Involving zn sinm(d z) cos(c zr+g)

>
>

Involving zn sinm(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 sinm(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 sinm(b zr+e) cos(c zr+g)

>
>
>

Involving zn sinm(b zr+d z) cos(c zr+g)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+g)

>
>

Involving zn sinm(d z) cos(c zr+f z)

>
>

Involving zn sinm(d z+e) cos(c zr+f z)

>
>

Involving zn sinm(b zr) cos(c zr+f z)

>
>

Involving zn sinm(b zr+e) cos(c zr+f z)

>
>

Involving zn sinm(b zr+d z) cos(c zr+f z)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn sinm(d z) cos(c zr+f z+g)

>
>

Involving zn sinm(d z+e) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+e) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(c z)cosnu(a z)

>
>

Involving ep zsinmu(c z+d)cos(a z)

>

Involving ep zsin(c z)cos(a z+b)

>

Involving ep zsin(c z+d)cos(a z+b)

>

Involving ep zrsin(b z2)cos(c z)

>
>

Involving ep zrsin(b z)cos(c z)

>
>

Involving ep zsin(b zr)cos(c z)

>
>

Involving ep z sin(b z)cos(c zr)

>
>

Involving ep zr sin(b z)cos(c zr)

>
>

Involving ep z sin(b zr)cos(c zr)

>
>

Involving ep zr sin(b zr)cos(c zr)

>
>
>

Involving eb zr+e sin(a zr+q) cos(c zr+g)

>
>
>

Involving eb zr+d z+e sin(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving sin and rational functions of exp

Involving sin(e z)cos(c z)(a+b ed z)-n

>

Involving ep zsin(e z)cos(c z)(a+b ed z)-n

>

Involving sin and algebraic functions of exp

Involving (a+b ed z)beta sin(e z)cos(c z)

>

Involving ep z(a+b ed z)beta sin(e z)cos(c z)

>

Involving powers of sin and exp

Involving ep zsinmu(c z)cos(a z)

>
>

Involving ep zsinmu(c z+d)cos(a z)

>
>

Involving ep zsinmu(c z)cos(a z+b)

>
>

Involving ep zsinmu(c z+d)cos(a z+b)

>
>

Involving ep zrsinm(b zr)cos(c z)

>
>

Involving ep zrsinm(b z)cos(c z)

>
>

Involving ep zsinm(b zr)cos(c z)

>
>

Involving ep z sinm(b z)cos(c zr)

>
>

Involving ep zr sinm(b z)cos(c zr)

>
>

Involving ep z sinm(b zr)cos(c zr)

>
>

Involving ep zr sinm(b zr)cos(c zr)

>
>
>

Involving eb zr+e sinm(a zr+q) cos(c zr+g)

>
>
>

Involving eb zr+d z+e sinm(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving powers of sin and rational functions of exp

Involving sinm(e z)cos(c z)(a+b ed z)-n

>

Involving ep zsinm(e z)cos(c z)(a+b ed z)-n

>

Involving powers of sin and algebraic functions of exp

Involving (a+b ed z)beta sinm(e z)cos(c z)

>

Involving ep z(a+b ed z)beta sinm(e z)cos(c z)

>

Involving products of sin and exp

>

Involving rational functions of sin and exp

Involving ep zcos(c z)/a+b sin(d z)

>

Involving ep z(a+b sin(d z))-ncos(c z)

>

Involving ep zcos(c z)/a+b sin2(d z)

>

Involving ep z(a+b sin2(d z))-ncos(c z)

>

Involving ep zsin(e z)cos(c z)/a+b sin(d z)

>

Involving ep zsin(e z)cos(c z)(a+b sin(d z))-n

>

Involving ep zsin(e z)cos(c z)/a+b sin2(d z)

>

Involving ep zsin(e z)cos(c z)(a+b sin2(d z))-n

>

Involving algebraic functions of sin and exp

Involving ep z(a+b sin(d z))beta cos(c z)

>

Involving ep z(a+b sin2(d z))beta cos(c z)

>

Involving ep zsin(e z)cos(c z)(a+b sin(d z))beta

>

Involving ep zsin(e z)cos(c z)(a+b sin2(d z))beta

>

Involving trigonometric, exponential and a power functions

Involving sin, exp and power

Involving zalpha-1eb zsin(c z)cos(a z)

>

Involving zalpha-1ep zsin(c z+d)cos(a z)

>

Involving zalpha-1ep zsin(c z)cos(a z+b)

>

Involving zalpha-1ep zsin(c z+d)cos(a z+b)

>

Involving znep zrsin(b zr)cos(c z)

>
>

Involving znep zrsin(b z)cos(c z)

>
>

Involving znep zsin(b zr)cos(c z)

>
>

Involving znep z sin(b z)cos(c zr)

>
>

Involving znep zr sin(b z)cos(c zr)

>
>

Involving znep z sin(b zr)cos(c zr)

>
>

Involving zalpha-1ep zr sin(b zr)cos(c zr)

>
>
>

Involving zalpha-1 eb zr+e sin(a zr+q) cos(c zr+g)

>
>
>

Involving zn eb zr+d z+e sin(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving powers of sin, exp and power

Involving zalpha-1ep zsinmu(c z)cos(a z)

>
>

Involving zalpha-1ep zsinmu(c z+d)cos(a z)

>
>

Involving zalpha-1ep zsinmu(c z)cos(a z+b)

>
>

Involving zalpha-1ep zsinmu(c z+d)cos(a z+b)

>
>

Involving znep zrsinm(b zr)cosv(c z)

>
>

Involving znep zrsinm(b z)cos(c z)

>
>

Involving znep zsinm(b zr)cos(c z)

>
>

Involving znep z sinm(b z)cos(c zr)

>
>

Involving znep zr sinm(b z)cos(c zr)

>
>

Involving znep z sinm(b zr)cos(c zr)

>
>

Involving zalpha-1ep zr sinm(b zr)cos(c zr)

>
>
>

Involving zalpha-1 eb zr+e sinm(a zr+q) cos(c zr+g)

>
>
>

Involving zn eb zr+d z+e sinm(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving functions of the direct function

Involving powers of the direct function

Involving powers of cos

Involving cosv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving cosnu(a z+b)

>

Involving cosv(a z2+b/z2)

>

Involving cosv(a z2+b/z2+c)

>

Involving cosv(a zr)

>
>
>

Involving cosv(a(zr)p)

>
>
>

Involving cosv(a zr+b)

>
>
>

Involving cosv(a zr+b z)

>
>

Involving cosv(a zr+b z+c)

>
>

Involving products of the direct

Involving products of two direct functions

Involving cos(c z) cos(a z)

>

Involving cos(c z) cos(a z+b)

>

Involving cos(c z+d) cos(a z+b)

>

Involving cos(d z) cos(c zr)

>
>

Involving cos(d z+e) cos(c zr)

>
>

Involving cos(a zr) cos(c zr)

>
>
>

Involving cos(d z) cos(c zr+g)

>
>

Involving cos(d z+e) cos(c zr+g)

>
>

Involving cos(a zr) cos(c zr+g)

>
>
>

Involving cos(a zr+e) cos(c zr+g)

>
>
>

Involving cos(d z) cos(c zr+f z)

>
>

Involving cos(d z+e) cos(c zr+f z)

>
>

Involving cos(b zr) cos(c zr+f z)

>
>

Involving cos(b zr+e) cos(c zr+f z)

>
>

Involving cos(b zr+d z) cos(c zr+f z)

>
>

Involving cos(d z) cos(c zr+f z+g)

>
>

Involving cos(d z+e) cos(c zr+f z+g)

>
>

Involving cos(b zr) cos(c zr+f z+g)

>
>

Involving cos(b zr+e) cos(c zr+f z+g)

>
>

Involving cos(b zr+d z) cos(c zr+f z+g)

>
>

Involving cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of several direct functions

Involving cos(a z+alpha) cos(b z+beta) cos(c z+gamma)

>
>
>

Involving ∏ k=1ncos(ak z)

>

Involving products of powers of the direct function

Involving product of power of the direct function and the direct function

Involving cos(c z)cosnu(a z)

>
>
>
>
>
>
>
>

Involving cos(c z+d)cosnu(a z)

>
>

Involving cos(c z)cosnu(a z+b)

>
>

Involving cos(c z+d)cosnu(a z+b)

>
>

Involving cos(b zr) cosv(c z)

>
>

Involving cos(b zr+e) cosv(c z)

>
>

Involving cos(b zr+d z) cosv(c z)

>
>

Involving cos(b zr+d z+e) cosv(c z)

>
>

Involving cos(b zr) cosv(f z+g)

>
>

Involving cos(b zr+e) cosv(f z+g)

>
>

Involving cos(b zr+d z) cosv(f z+g)

>
>

Involving cos(b zr+d z+e) cosv(f z+g)

>
>

Involving cos(b z) cosv(c zr)

>
>

Involving cos(d z+e) cosv(c zr)

>
>

Involving cos(a zr) cosv(c zr)

>
>
>

Involving cos(a zr+e) cosv(c zr)

>
>
>

Involving cos(b zr+d z) cosv(c zr)

>
>

Involving cos(b zr+d z+e) cosv(c zr)

>
>

Involving cos(d z) cosv(c zr+g)

>
>

Involving cos(d z+e) cosv(c zr+g)

>
>

Involving cos(a zr) cosv(c zr+g)

>
>
>

Involving cos(a zr+e) cosv(c zr+g)

>
>
>

Involving cos(b zr+d z) cosv(c zr+g)

>
>

Involving cos(b zr+d z+e) cosv(c zr+g)

>
>

Involving cos(d z) cosv(c zr+f z)

>
>

Involving cos(d z+e) cosv(c zr+f z)

>
>

Involving cos(b zr) cosv(c zr+f z)

>
>

Involving cos(b zr+e) cosv(c zr+f z)

>
>

Involving cos(b zr+d z) cosv(c zr+f z)

>
>

Involving cos(b zr+d z+e) cosv(c zr+f z)

>
>

Involving cos(d z) cosv(c zr+f z+g)

>
>

Involving cos(d z+e) cosv(c zr+f z+g)

>
>

Involving cos(b zr) cosv(c zr+f z+g)

>
>

Involving cos(b zr+e) cosv(c zr+f z+g)

>
>

Involving cos(b zr+d z) cosv(c zr+f z+g)

>
>

Involving cos(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions

Involving cosmu(c z)cosv(a z)

>
>
>
>
>
>
>

Involving cosmu(c z)cosv(a z+b)

>
>

Involving cosmu(c z+d)cosv(a z+b)

>
>

Involving cosm(d z) cosv(c zr)

>
>

Involving cosm(d z+e) cosv(c zr)

>
>

Involving cosm(a zr) cosv(c zr)

>
>
>

Involving cosm(d z) cosv(c zr+g)

>
>

Involving cosm(d z+e) cosv(c zr+g)

>
>

Involving cosm(a zr) cosv(c zr+g)

>
>
>

Involving cosm(a zr+e) cosv(c zr+g)

>
>
>

Involving cosm(d z) cosv(c zr+f z)

>
>

Involving cosm(d z+e) cosv(c zr+f z)

>
>

Involving cosm(b zr) cosv(c zr+f z)

>
>

Involving cosm(b zr+e) cosv(c zr+f z)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z)

>
>

Involving cosm(d z) cosv(c zr+f z+g)

>
>

Involving cosm(d z+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving rational functions of the direct function

Involving 1/a+b cos(c z)

>
>
>

Involving (a+b cos(c z))-n

>
>
>
>
>

Involving 1/a+b cosn(c z)

>
>
>
>
>
>

Involving (a+b cos2(c z))-n

>
>

Involving cos(d z)/a+b cos(c z)

>
>
>
>
>
>
>

Involving cos(d z)(a+b cos(c z))-n

>
>
>
>
>
>
>
>

Involving cos(d z)/a+b cos2(c z)

>
>
>

Involving cosm(c z)/a+b cosn(c z)

>
>
>

Involving cos(d z)(a+b cos2(c z))-n

>

Involving cosm(c z)(a+b cos2(c z))-n

>
>

Involving cos(e z)cos(d z)/a+b cos(c z)

>

Involving cos(e z)cos(d z)(a+b cos(c z))-n

>

Involving cos(e z)cos(d z)/a+b cos2(c z)

>

Involving cos(e z)cos(d z)(a+b cos2(c z))-n

>

Involving algebraic functions of the direct function

Involving (a+b cos(c z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos(c z))nu)beta

>
>
>
>
>

Involving (a+b cos(c z))beta cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos(c z))nu)beta cos(d z)

>
>
>
>
>
>
>

Involving (a+b cos(c z))beta cosnu(c z)

>
>
>

Involving (a+b cos(c z))betaand rational function of cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving (a+b cos(2c z))beta cos(c z)

>
>
>
>
>
>

Involving ((a+b cos(2c z))m)+-1/2cos(c z)

>
>
>
>

Involving (a+b cos(2c z))beta cosv(c z)

>
>
>
>
>
>
>
>
>
>
>
>

Involving cos(e z)cos(d z)(a+b cos(c z))beta

>

Involving (a+b cos2(c z))beta

>
>
>
>
>
>
>

Involving (a+b cos2(c z))betacos(d z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos2(c z))nu)beta

>
>
>
>
>

Involving ((a+b cos2(c z))nu)betacos(d z)

>
>
>
>
>
>
>

Involving (a+b cos2(c z))beta cosnu(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving (a+b sin2(c z))betaand rational function of sin(c z)

>
>
>
>
>
>
>

Involving cos(e z)cos(d z)(a+b cos2(c z))beta

>

Involving (a+b cos2(c z))betaand algebraic function of cos(c z)

>
>

Other integrals

>
>

Involving functions of the direct function and a power function

Involving powers of the direct function and a power function

Involving powers of sin and power

Involving zalpha-1 cosv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 cosnu(a z+b)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 cosv(a zr)

>
>
>
>
>
>

Involving zalpha-1 cosv(a zr+b)

>
>
>
>
>
>

Involving zn cosv(c zr+f z)

>
>

Involving zn cosv(c zr+f z+g)

>
>

Involving powers of the direct function and algebraic functions

Involving powers of cos and algebraic functions

Involving (a z+b)beta

>
>
>
>

Involving products of the direct function and a power function

Involving products of two direct functions and a power function

Involving zalpha-1cos(c z)cos(a z)

>
>
>
>

Involving zalpha-1cos(c z)cos(a z+b)

>

Involving zalpha-1cos(c z+d)cos(a z+b)

>

Involving zn cos(d z) cos(c zr)

>
>

Involving zn cos(d z+e) cos(c zr)

>
>

Involving zalpha-1 cos(b zr) cos(c zr)

>
>
>

Involving zn cos(d z) cos(c zr+g)

>
>

Involving zn cos(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 cos(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 cos(b zr+e) cos(c zr+g)

>
>
>

Involving zn cos(d z) cos(c zr+f z)

>
>

Involving zn cos(d z+e) cos(c zr+f z)

>
>

Involving zn cos(b zr) cos(c zr+f z)

>
>

Involving zn cos(b zr+e) cos(c zr+f z)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn cos(d z) cos(c zr+f z+g)

>
>

Involving zn cos(d z+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of several direct functions and a power function

Involving zalpha-1cos(a z) cos(b z) cos(c z)

>
>

Involving zalpha-1k=1ncos(ak z)

>
>

Involving products of powers of the direct function and a power function

Involving product of power of the direct function, the direct function and a power function

Involving zalpha-1cos(c z)cosnu(a z)

>
>

Involving zalpha-1cos(c z+d)cosv(a z)

>
>

Involving zalpha-1cos(c z)cosv(a z+b)

>
>

Involving zalpha-1cos(c z+d)cosv(a z+b)

>
>

Involving zn cos(b zr) cosv(c z)

>
>

Involving zn cos(b zr+e) cosv(c z)

>
>

Involving zn cos(b zr+d z) cosv(c z)

>
>

Involving zn cos(b zr+d z+e) cosv(c z)

>
>

Involving zn cos(b zr) cosv(f z+g)

>
>

Involving zn cos(b zr+e) cosv(f z+g)

>
>

Involving zn cos(b zr+d z) cosv(f z+g)

>
>

Involving zn cos(b zr+d z+e) cosv(f z+g)

>
>

Involving zn cos(b z) cosv(c zr)

>
>

Involving zn cos(d z+e) cosv(c zr)

>
>

Involving zalpha-1 cos(b zr) cosv(c zr)

>
>
>

Involving zalpha-1 cos(b zr+e) cosv(c zr)

>
>
>

Involving zn cos(b zr+d z) cosv(c zr)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr)

>
>

Involving zn cos(d z) cosv(c zr+g)

>
>

Involving zn cos(d z+e) cosv(c zr+g)

>
>

Involving zalpha-1 cos(b zr) cosv(c zr+g)

>
>
>

Involving zalpha-1 cos(b zr+e) cosv(c zr+g)

>
>
>

Involving zn cos(b zr+d z) cosv(c zr+g)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+g)

>
>

Involving zn cos(d z) cosv(c zr+f z)

>
>

Involving zn cos(d z+e) cosv(c zr+f z)

>
>

Involving zn cos(b zr) cosv(c zr+f z)

>
>

Involving zn cos(b zr+e) cosv(c zr+f z)

>
>

Involving zn cos(b zr+d z) cosv(c zr+f z)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+f z)

>
>

Involving zn cos(d z) cosv(c zr+f z+g)

>
>

Involving zn cos(d z+e) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+e) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+d z) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions and a power function

Involving zalpha-1cosmu(c z)cosv(a z)

>
>

Involving zalpha-1cosmu(c z)cosv(a z+b)

>
>
>

Involving zalpha-1cosmu(c z+d)cosv(a z+b)

>
>

Involving zncosm(b z)cosv(c zr)

>
>

Involving zn cosm(d z+e) cosv(c zr)

>
>

Involving zalpha-1 cosm(b zr+e) cosv(c zr)

>
>
>

Involving zn cosm(d z) cosv(c zr+g)

>
>

Involving zn cosm(d z+e) cosv(c zr+g)

>
>

Involving zalpha-1 cosm(b zr+e) cosv(c zr+g)

>
>
>

Involving zalpha-1 cosm(b zr+e) cosv(c zr+g)

>
>
>

Involving zn cosm(d z) cosv(c zr+f z)

>
>

Involving zn cosm(d z+e) cosv(c zr+f z)

>
>

Involving zn cosm(b zr) cosv(c zr+f z)

>
>

Involving zn cosm(b zr+e) cosv(c zr+f z)

>
>

Involving zn cosm(b zr+d z) cosv(c zr+f z)

>
>

Involving zn cosm(d z) cosv(c zr+f z+g)

>
>

Involving zn cosm(d z+e) cosv(c zr+f z+g)

>
>

Involving zn cosm(b zr) cosv(c zr+f z+g)

>
>

Involving zn cosm(b zr+e) cosv(c zr+f z+g)

>
>

Involving zn cosm(b zr+d z) cosv(c zr+f z+g)

>
>

Involving zn cosm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving rational functions of the direct function and a power function

Involving z/a+b cos(c z+d)

>
>
>
>

Involving z cos(c z)/a+b cos(2c z)

>

Involving algebraic functions of the direct function and a power function

Involving z cos(c z)/(a+b cos2(c z))beta

>

Involving functions of the direct function and algebraic functions

Involving products of the direct function and algebraic functions

Involving products of two direct functions and algebraic functions

Involving (f+e z)alpha-1cos(d+c z) cos(b+a z)

>
>
>

Involving functions of the direct function and exponential function

Involving powers of the direct function and exponential function

Involving powers of cos and exp

Involving eb z cosv(a z)

>
>
>
>
>
>
>
>
>
>

Involving eb z+e cosv(a z)

>
>

Involving ep z cosnu(a z+b)

>
>

Involving ep z+e cosnu(a z+b)

>
>

Involving eb zrcosv(c z)

>
>

Involving eb zr+ecosv(c z)

>
>

Involving eb zr+d zcosv(c z)

>
>

Involving eb zr+d z+ecosv(c z)

>
>

Involving eb zr cosv(f z+g)

>
>

Involving eb zr+e cosv(f z+g)

>
>

Involving eb zr+d z cosv(f z+g)

>
>

Involving eb zr+d z+e cosv(f z+g)

>
>

Involving eb z cosv(c zr)

>
>

Involving eb z+e cosv(c zr)

>
>

Involving eb zrcosv(c zr)

>
>
>

Involving eb zr+ecosv(c zr)

>
>
>

Involving eb zr+d zcosv(c zr)

>
>

Involving eb zr+d z+e cosv(c zr)

>
>

Involving ed z cosv(c zr+g)

>
>

Involving ed z+e cosv(c zr+g)

>
>

Involving eb zrcosv(c zr+g)

>
>
>

Involving eb zr+ecosv(c zr+g)

>
>
>

Involving eb zr+d z cosv(c zr+g)

>
>

Involving eb zr+d z+e cosv(c zr+g)

>
>

Involving ed z cosv(c zr+f z)

>
>

Involving ed z+e cosv(c zr+f z)

>
>

Involving eb zr cosv(c zr+f z)

>
>

Involving eb zr+e cosv(c zr+f z)

>
>

Involving eb zr+d z cosv(c zr+f z)

>
>

Involving eb zr+d z+e cosv(c zr+f z)

>
>

Involving ed z cosv(c zr+f z+g)

>
>

Involving ed z+e cosv(c zr+f z+g)

>
>

Involving eb zr cosv(c zr+f z+g)

>
>

Involving eb zr+e cosv(c zr+f z+g)

>
>

Involving eb zr+d z cosv(c zr+f z+g)

>
>

Involving eb zr+d z+e cosv(c zr+f z+g)

>
>

Involving powers of direct function and rational functions of exp

Involving cosv(c z)(a+b ed z)-n

>

Involving ep zcosv(c z)(a+b ed z)-n

>

Involving powers of direct function and algebraic functions of exp

Involving (a+b ed z)beta cosv(c z)

>

Involving ep z(a+b ed z)beta cosv(c z)

>

Involving products of the direct function and exponential function

Involving products of two direct functions and exponential function

Involving eb zcos(c z) cos(a z)

>

Involving ep zcos(c z) cos(a z+b)

>

Involving ep zcos(c z+d) cos(a z+b)

>

Involving ep zrcos(b z)cos(c z)

>
>

Involving ep zcos(b zr)cos(c z)

>
>

Involving ep zrcos(b zr)cos(c z)

>
>

Involving ep z cos(b zr)cos(c zr)

>
>

Involving ep zr cos(b zr)cos(c zr)

>
>
>

Involving eb zr+e cos(a zr+q) cos(c zr+g)

>
>
>

Involving eb zr+d z+e cos(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving products of two direct functions and rational functions of exp

Involving cos(e z)cos(c z)(a+b ed z)-n

>

Involving ep zcos(e z)cos(c z)(a+b ed z)-n

>

Involving products of two direct functions and algebraic functions of exp

Involving (a+b ed z)beta cos(e z)cos(c z)

>

Involving ep z(a+b ed z)beta cos(e z)cos(c z)

>

Involving products of several direct functions and exponential function

Involving ep zcos(a z) cos(b z) cos(c z)

>

Involving ep zk=1ncos(ak z)

>

Involving products of powers of two direct functions and exponential function

Involving product of power of the direct function, the direct function and exponential function

Involving eb zcos(c z) cosnu(a z)

>
>

Involving ep zcos(c z+d) cosv(a z)

>
>

Involving ep zcos(c z) cosv(a z+b)

>
>

Involving ep zcos(c z+d) cosv(a z+b)

>
>

Involving ep zrcos(b z)cosv(c z)

>
>

Involving ep zcos(b zr)cosv(c z)

>
>

Involving ep z cos(b z)cosv(c zr)

>
>

Involving ep z cos(b zr)cosv(c zr)

>
>

Involving ep zr cos(b z)cosv(c zr)

>
>

Involving ep zrcos(b zr)cosv(c z)

>
>

Involving ep zr cos(b zr)cosv(c zr)

>
>
>

Involving eb zr+e cos(a zr+q) cosv(c zr+g)

>
>
>

Involving eb zr+d z+e cos(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving product of power of the direct function, the direct function and rational functions of exp

Involving cos(e z)cosv(c z)(a+b ed z)-n

>

Involving ep zcos(e z)cosv(c z)(a+b ed z)-n

>

Involving product of power of the direct function, the direct function and algebraic functions of exp

Involving (a+b ed z)beta cos(e z)cosv(c z)

>

Involving ep z(a+b ed z)beta cos(e z)cosv(c z)

>

Involving product of powers of two direct functions and exponential function

Involving eb zcosmu(c z) cosv(a z)

>
>

Involving ep zcosm(c z) cosv(a z+b)

>
>
>

Involving ep zcosmu(c z+d) cosv(a z+b)

>
>

Involving ep zrcosm(b z)cosv(c z)

>
>

Involving ep zcosm(b zr)cosv(c z)

>
>

Involving ep zrcosm(b zr)cosv(c z)

>
>

Involving ep z cosm(b zr)cosv(c zr)

>
>

Involving ep zr cosm(b zr)cosv(c zr)

>
>
>

Involving eb zr+e cosm(a zr+q) cosv(c zr+g)

>
>
>

Involving eb zr+d z+e cosm(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions and rational functions of exp

Involving cosm(e z)cosv(c z)(a+b ed z)-n

>

Involving ep zcosm(e z)cosv(c z)(a+b ed z)-n

>

Involving product of powers of two direct functions and algebraic functions of exp

Involving (a+b ed z)beta cosm(e z)cosv(c z)

>

Involving ep z(a+b ed z)beta cosm(e z)cosv(c z)

>

Involving rational functions of the direct function and exponential function

Involving exp

Involving ep z/a+b cos(c z)

>
>

Involving ep z(a+b cos(c z))-n

>

Involving ep z/a+b cos2(c z)

>

Involving ep z(a+b cos2(c z))-n

>

Involving ep z cos(d z)/a+b cos(c z)

>

Involving ep z(a+b cos(c z))-ncos(d z)

>

Involving ep zcos(d z)/a+b cos2(c z)

>

Involving ep z(a+b cos2(c z))-ncos(d z)

>

Involving ep zcos(e z)cos(d z)/a+b cos(c z)

>

Involving ep zcos(e z)cos(d z)(a+b cos(c z))-n

>

Involving ep zcos(e z)cos(d z)/a+b cos2(c z)

>

Involving ep zcos(e z)cos(d z)(a+b cos2(c z))-n

>

Involving algebraic functions of the direct function and exponential function

Involving exp

Involving ep z (a+b cos(c z))beta

>

Involving ep z (a+b cos2(c z))beta

>

Involving ep z(a+b cos(d z))beta cos(c z)

>

Involving ep z(a+b cos2(d z))beta cos(c z)

>

Involving ep zcos(e z)cos(d z)(a+b cos(c z))beta

>

Involving ep zcos(e z)cos(d z)(a+b cos2(c z))beta

>

Involving functions of the direct function, exponential and a power functions

Involving powers of the direct function, exponential and a power functions

Involving powers of cos, exp and power

Involving zalpha-1 eb z cosv(a z)

>
>
>
>
>
>

Involving zalpha-1 eb z+e cosv(a z)

>
>
>
>
>
>

Involving zalpha-1 ep z cosnu(a z+b)

>
>
>
>
>
>

Involving zalpha-1 ep z+e cosnu(a z+b)

>
>
>
>
>
>

Involving zn eb zrcosv(c z)

>
>

Involving zn eb zr+e cosv(c z)

>
>

Involving zneb zr+d zcosv(c z)

>
>

Involving zneb zr+d z+ecosv(c z)

>
>

Involving zn eb zr cosv(f z+g)

>
>

Involving zn eb zr+e cosv(f z+g)

>
>

Involving zn eb zr+d z cosv(f z+g)

>
>

Involving zn eb zr+d z+e cosv(f z+g)

>
>

Involving zn eb z cosv(c zr)

>
>

Involving zn eb z+e cosv(c zr)

>
>

Involving zalpha-1eb zrcosv(c zr)

>
>
>

Involving zalpha-1 eb zr+e cosv(c zr)

>
>
>

Involving zneb zr+d zcosv(c zr)

>
>

Involving zn eb zr+d z+e cosv(c zr)

>
>

Involving zn ed z cosv(c zr+g)

>
>

Involving zn ed z+e cosv(c zr+g)

>
>

Involving zalpha-1 eb zr cosv(c zr+g)

>
>
>

Involving zalpha-1 eb zr+e cosv(c zr+g)

>
>
>

Involving zn eb zr+d z cosv(c zr+g)

>
>

Involving zn eb zr+d z+e cosv(c zr+g)

>
>

Involving zn ed z cosv(c zr+f z)

>
>

Involving zn ed z+e cosv(c zr+f z)

>
>

Involving zn eb zr cosv(c zr+f z)

>
>

Involving zn eb zr+e cosv(c zr+f z)

>
>

Involving zn eb zr+d z+e cosv(c zr+f z)

>
>

Involving zn eb zr+d z+e cosv(c zr+f z)

>
>

Involving zn ed z cosv(c zr+f z+g)

>
>

Involving zn ed z+e cosv(c zr+f z+g)

>
>

Involving zn eb zr cosv(c zr+f z+g)

>
>

Involving zn eb zr+e cosv(c zr+f z+g)

>
>

Involving zn eb zr+d z cosv(c zr+f z+g)

>
>

Involving zn eb zr+d z+e cosv(c zr+f z+g)

>
>

Involving products of the direct functions, exponential and a power functions

Involving products of two direct functions, exponential and a power functions

Involving zalpha-1ep zcos(c z) cos(a z)

>

Involving zalpha-1ep zcos(c z) cos(a z+b)

>

Involving zalpha-1ep zcos(c z+d) cos(a z+b)

>

Involving znep zrcos(b z)cos(c z)

>
>

Involving znep zcos(b zr)cos(c z)

>
>

Involving znep zrcos(b zr)cos(c z)

>
>

Involving znep z cos(b zr)cos(c zr)

>
>

Involving zalpha-1ep zr cos(b zr)cos(c zr)

>

Involving zalpha-1 eb zr+e cos(a zr+q) cos(c zr+g)

>

Involving zn eb zr+d z+e cos(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving products of several direct functions, exponential and a power functions

Involving zalpha-1ep z cos(a z) cos(b z) cos(c z)

>

Involving zalpha-1ep zk=1ncos(ak z)

>
>

Involving products of powers of the direct function, exponential and a power functions

Involving product of power of the direct function, the direct function, exponential and a power functions

Involving zalpha-1eb zcos(c z) cosnu(a z)

>
>

Involving zneb zcos(c z+d) cosnu(a z)

>
>

Involving zalpha-1ep zc os(c z) cosv(a z+b)

>
>

Involving zalpha-1ep zcos(c z+d) cosv(a z+b)

>
>

Involving znep zrcos(b z) cosv(c z)

>
>

Involving znep zcos(b zr)cosv(c z)

>
>

Involving znep zcos(b z)cosv(c zr)

>
>

Involving znep z cos(b zr)cosv(c zr)

>
>

Involving znep zrcos(b z)cosv(c zr)

>
>

Involving znep zrcos(b zr)cosv(c z)

>
>

Involving zalpha-1ep zr cos(b zr)cosv(c zr)

>

Involving zalpha-1 eb zr+e cos(a zr+q) cosv(c zr+g)

>

Involving zn eb zr+d z+e cos(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions, exponential and a power functions

Involving zalpha-1eb zcosmu(c z) cosv(a z)

>
>

Involving zalpha-1ep zcosm(c z) cosv(a z+b)

>
>
>

Involving zalpha-1ep zcosm(c z+d) cosv(a z+b)

>
>

Involving znep zrcosm(b z) cosv(c z)

>
>

Involving znep zcosm(b zr)cosv(c z)

>
>

Involving znep zrcosm(b zr)cosv(c z)

>
>

Involving znep z cosm(b zr)cosv(c zr)

>
>

Involving zalpha-1ep zr cosm(b zr)cosv(c zr)

>

Involving zalpha-1 eb zr+e cosm(a zr+q) cosv(c zr+g)

>

Involving zn eb z2+d z+e cosm(a z2+p z+q) cosv(c z2+f z+g)

>
>

Involving functions of the direct function, exponential and algebraic functions

Involving powers of the direct function, exponential and algebraic functions

Involving powers of cos, exp and algebraic functions

Involving (a z+b)beta dz cosv(c z+e)

>
>
>
>
>
>

Involving products of the direct function, exponential and algebraic functions

Involving products of cos, exp and algebraic functions

Involving (a z+b)beta dz cos(c z) cos(e z)

>

Involving functions of the direct function and trigonometric functions

Involving powers of the direct function and trigonometric functions

Involving sin

Involving sin(c z)sinnu(a z)

>
>

Involving sin(c z+d)cosnu(a z)

>
>

Involving sin(c z)cosnu(a z+b)

>
>

Involving sin(c z+d)cosnu(a z+b)

>
>

Involving sin(b zr)cosv(c z)

>
>

Involving sin(b zr+e)cosv(c z)

>
>

Involving sin(b zr+d z)cosv(c z)

>
>

Involving sin(b zr+d z+e)cosv(c z)

>
>

Involving sin(b zr) cosv(f z+g)

>
>

Involving sin(b zr+e) cosv(f z+g)

>
>

Involving sin(b zr+d z) cosv(f z+g)

>
>

Involving sin(b zr+d z+e) cosv(f z+g)

>
>

Involving sin(b z)cosv(c zr)

>
>

Involving sin(d z+e) cosv(c zr)

>
>

Involving sin(b zr) cosv(c zr)

>
>
>

Involving sin(b zr+e) cosv(c zr)

>
>
>

Involving sin(b zr+d z) cosv(c zr)

>
>

Involving sin(b zr+d z+e) cosv(c zr)

>
>

Involving sin(d z) cosv(c zr+g)

>
>

Involving sin(d z+e) cosv(c zr+g)

>
>

Involving sin(b zr) cosv(c zr+g)

>
>
>

Involving sin(b zr+e) cosv(c zr+g)

>
>
>

Involving sin(b zr+d z) cosv(c zr+g)

>
>

Involving sin(b zr+d z+e) cosv(c zr+g)

>
>

Involving sin(d z) cosv(c zr+f z)

>
>

Involving sin(d z+e) cosv(c zr+f z)

>
>

Involving sin(b zr) cosv(c zr+f z)

>
>

Involving sin(b zr+e) cosv(c zr+f z)

>
>

Involving sin(b zr+d z) cosv(c zr+f z)

>
>

Involving sin(b zr+d z+e) cosv(c zr+f z)

>
>

Involving sin(d z) cosv(c zr+f z+g)

>
>

Involving sin(d z+e) cosv(c zr+f z+g)

>
>

Involving sin(b zr) cosv(c zr+f z+g)

>
>

Involving sin(b zr+e) cosv(c zr+f z+g)

>
>

Involving sin(b zr+d z) cosv(c zr+f z+g)

>
>

Involving sin(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving powers of sin

Involving sinmu(c z)sinv(a z)

>
>
>

Involving sinmu(c z+d)cosv(a z)

>
>
>

Involving sinmu(c z)cosv(a z+b)

>
>
>

Involving sinmu(c z+d)cosv(a z+b)

>
>
>

Involving sinm(b zr)cosv(c z)

>
>

Involving sinm(b zr+e)cosv(c z)

>
>

Involving sinm(b zr+d z)cosv(c z)

>
>

Involving sinm(b zr+d z+e)cosv(c z)

>
>

Involving sinm(b zr) cosv(f z+g)

>
>

Involving sinm(b zr+e) cosv(f z+g)

>
>

Involving sinm(b zr+d z) cosv(f z+g)

>
>

Involving sinm(b zr+d z+e) cosv(f z+g)

>
>

Involving sin(b z)mcosv(c zr)

>
>

Involving sinm(d z+e) cosv(c zr)

>
>

Involving sinm(b zr)cosv(c zr)

>
>
>

Involving sinm(b zr+e) cosv(c zr)

>
>
>

Involving sinm(b zr+d z) cosv(c zr)

>
>

Involving sinm(b zr+d z+e) cosv(c zr)

>
>

Involving sinm(d z) cosv(c zr+g)

>
>

Involving sinm(d z+e) cosv(c zr+g)

>
>

Involving sinm(b zr) cosv(c zr+g)

>
>
>

Involving sinm(b zr+e) cosv(c zr+g)

>
>
>

Involving sinm(b zr+d z) cosv(c zr+g)

>
>

Involving sinm(b zr+d z+e) cosv(c zr+g)

>
>

Involving sinm(d z) cosv(c zr+f z)

>
>

Involving sinm(d z+e) cosv(c zr+f z)

>
>

Involving sinm(b zr) cosv(c zr+f z)

>
>

Involving sinm(b zr+e) cosv(c zr+f z)

>
>

Involving sinm(b zr+d z) cosv(c zr+f z)

>
>

Involving sinm(b zr+d z+e) cosv(c zr+f z)

>
>

Involving sinm(d z) cosv(c zr+f z+g)

>
>

Involving sinm(d z+e) cosv(c zr+f z+g)

>
>

Involving sinm(b zr) cosv(c zr+f z+g)

>
>

Involving sinm(b zr+e) cosv(c zr+f z+g)

>
>

Involving sinm(b zr+d z) cosv(c zr+f z+g)

>
>

Involving sinm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving sin and rational functions of cos

Involving sin(d z)/a+b cos(c z)

>
>
>
>
>
>
>
>
>

Involving sin(d z)(a+b cos(c z))-n

>
>
>
>
>
>
>
>

Involving sin(d z)/a+b cos2(c z)

>
>

Involving sin(d z)(a+b cos2(c z))-n

>

Involving rational functions of sin

Involving 1/a+b sin(c z)

>
>

Involving algebraic functions of sin

>
>
>

Involving products of the direct function and trigonometric functions

Involving sin

Involving sin(a z) cos(b z)cos(c z)

>

Involving rational functions of sin

Involving cos(e z)cos(d z)/a+b sin(c z)

>

Involving cos(e z)cos(d z)(a+b sin(c z))-n

>

Involving cos(e z)cos(d z)/a+b sin2(c z)

>

Involving cos(e z)cos(d z)(a+b sin2(c z))-n

>

Involving algebraic functions of sin

Involving cos(d z)cos(e z)(a+b sin(c z))beta

>

Involving cos(d z)cos(e z)(a+b sin2(c z))beta

>

Involving cos(d z)cos(e z)((a+b sin2(c z))n)beta TO ADD

>
>

Involving rational functions of the direct function and trigonometric functions

Involving sin

Involving sin(d z)/a+b cos(c z)

>
>

Involving ep zsin(d z)(a+b cos(c z))-n

>
>

Involving sin(d z)/a+b cos2(c z)

>
>

Involving sin(d z)(a+b cos2(c z))-n

>
>

Involving sin(d z)cos(e z)/a+b cos(c z)

>

Involving sin(d z)cos(e z)(a+b cos(c z))-n

>

Involving sin(d z)cos(e z)/a+b cos2(c z)

>

Involving sin(d z)cos(e z)(a+b cos2(c z))-n

>

Involving rational functions of sin

Involving (a sin(e z)+b cos(e z))-n

>
>
>
>

Involving sin(d z)(a sin(e z)+b cos(e z))-n

>
>
>
>

Involving cos(d z)(a sin(e z)+b cos(e z))-n

>
>
>
>
>
>

Involving (a+b sin(e z)+c cos(e z))-n

>
>
>
>
>
>
>

Involving sin(d z)(a+b sin(e z)+c cos(e z))-n

>
>
>
>

Involving cos(d z)(a+b sin(e z)+c cos(e z))-n

>
>
>
>

Involving (a sin2(e z)+b cos2(e z))-n

>
>
>

Involving sin(d z)(a sin2(e z)+b cos2(e z))-n

>
>
>
>

Involving ep zcos(d z)(a sin2(e z)+b cos2(e z))-n

>
>
>
>

Involving (a +b sin2(e z)+c cos2(e z))-n

>
>
>

Involving sin(d z)(a+b sin2(e z)+c cos2(e z))-n

>
>
>
>

Involving cos(d z)(a+b sin2(e z)+c cos2(e z))-n

>
>
>
>

Involving (a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>
>
>

Involving sin(d z)(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>
>

Involving cos(d z)(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>
>

Involving 1/f(z)+b cos2(z)

>

Involving algebraic functions of the direct function and trigonometric functions

Involving sin

Involving sin(d z)(a+b cos(c z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving sinn(c z)(a+b cos(2c z))beta

>
>
>
>
>
>
>
>
>
>
>
>

Involving sinm(c z)cosm(c z)(a+b cos(2c z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving sin(d z)cos(e z)(a+b cos(c z))beta

>

Involving f(z)(a+b cos(c z))beta

>

Involving sin(d z)(a+b cos2(c z))beta

>
>
>
>

Involving sin(d z)cos(e z)(a+b cos2(c z))beta

>

Involving f(z)(a+b cosn(c z))beta

>

Involving rational functions of sin

Involving f(z)(a+b cos(c z))beta

>
>
>

Involving algebraic functions of sin

Involving (a sin(e z)+b cos(e z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>

Involving sin(d z)(a sin(e z)+b cos(e z))beta

>

Involving cos(d z)(a sin(e z)+b cos(e z))beta

>

Involving (a+b sin(e z)+c cos(e z))beta

>
>
>
>
>
>
>

Involving sin(d z) (a+b sin(e z)+c cos(e z))beta

>

Involving cos(d z) (a+b sin(e z)+c cos(e z))beta

>

Involving (a sin2(e z)+b cos2(e z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving sin(d z) (a sin2(e z)+b cos2(e z))beta

>

Involving cos(d z) (a sin2(e z)+b cos2(e z))beta

>

Involving (a +b sin2(e z)+c cos2(e z))beta

>
>
>
>
>
>
>
>
>

Involving sin(d z) (a+b sin2(e z)+c cos2(e z))beta

>

Involving cos(d z) (a+b sin2(e z)+c cos2(e z))beta

>

Involving (a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving sin(d z) (a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving cos(d z) (a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving functions of the direct function, trigonometric and a power functions

Involving powers of the direct function, trigonometric and a power functions

Involving sin and power

Involving zalpha-1sin(c z)cosv(a z)

>
>

Involving zalpha-1sin(c z+d)cosv(a z)

>
>

Involving zalpha-1sin(c z)cosv(a z+b)

>
>

Involving zalpha-1sin(c z+d)cosv(a z+b)

>
>

Involving znsin(b zr)cosv(c z)

>
>

Involving zn sin(b zr+e) cosv(c z)

>
>

Involving znsin(b zr+d z)cosv(c z)

>
>

Involving znsin(b zr+d z+e)cosv(c z)

>
>

Involving zn sin(b zr) cosv(f z+g)

>
>

Involving zn sin(b zr+e) cosv(f z+g)

>
>

Involving zn sin(b zr+d z) cosv(f z+g)

>
>

Involving zn sin(b zr+d z+e) cosv(f z+g)

>
>

Involving zn sin(b z) cosv(c zr)

>
>

Involving zn sin(d z+e) cosv(c zr)

>
>

Involving zalpha-1sin(b zr)cosv(c zr)

>

Involving zalpha-1sin(b zr+e)cosv(c zr)

>

Involving zn sin(b zr+d z) cosv(c zr)

>
>

Involving zn sin(b zr+d z+e) cosv(c zr)

>
>

Involving zn sin(d z) cosv(c zr+g)

>
>

Involving zn sin(d z+e) cosv(c zr+g)

>
>

Involving zalpha-1 sin(b zr) cosv(c zr+g)

>
>
>

Involving zalpha-1 sin(b zr+e) cosv(c zr+g)

>
>
>

Involving zn sin(b zr+d z) cosv(c zr+g)

>
>

Involving zn sin(b zr+d z+e) cosv(c zr+g)

>
>

Involving zn sin(d z) cosv(c zr+f z)

>
>

Involving zn sin(d z+e) cosv(c zr+f z)

>
>

Involving zn sin(b zr) cosv(c zr+f z)

>
>

Involving zn sin(b zr+e) cosv(c zr+f z)

>
>

Involving zn sin(b zr+d z) cosv(c zr+f z)

>
>

Involving zn sin(b zr+d z+e) cosv(c zr+f z)

>
>

Involving zn sin(d z) cosv(c zr+f z+g)

>
>

Involving zn sin(d z+e) cosv(c zr+f z+g)

>
>

Involving zn sin(b zr) cosv(c zr+f z+g)

>
>

Involving zn sin(b zr+e) cosv(c zr+f z+g)

>
>

Involving zn sin(b zr+d z) cosv(c zr+f z+g)

>
>

Involving zn sin(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving powers of sin and power

Involving zalpha-1sinmu(c z)cosv(a z)

>
>
>

Involving zalpha-1sinmu(c z+d)cosv(a z)

>
>
>

Involving zalpha-1sinmu(c z)cosv(a z+b)

>
>
>

Involving zalpha-1sinmu(c z+d)cosv(a z+b)

>
>
>

Involving znsinm(b zr)cosv(c z)

>
>

Involving zn sinm(b zr+e) cosv(c z)

>
>

Involving znsinm(b zr+d z)cosv(c z)

>
>

Involving znsinm(b zr+d z+e)cosv(c z)

>
>

Involving zn sinm(b zr) cosv(f z+g)

>
>

Involving zn sinm(b zr+e) cosv(f z+g)

>
>

Involving zn sinm(b zr+d z) cosv(f z+g)

>
>

Involving zn sinm(b zr+d z+e) cosv(f z+g)

>
>

Involving znsinm(b z)cosv(c zr)

>
>

Involving zn sinm(d z+e) cosv(c zr)

>
>

Involving zalpha-1sinm(b zr)cosv(c zr)

>
>
>

Involving zalpha-1sinm(b zr+e)cosv(c zr)

>
>
>

Involving zn sinm(b zr+d z) cosv(c zr)

>
>

Involving zn sinm(b zr+d z+e) cosv(c zr)

>
>

Involving zn sinm(d z) cosv(c zr+g)

>
>

Involving zn sinm(d z+e) cosv(c zr+g)

>
>

Involving zalpha-1 sinm(b zr) cosv(c zr+g)

>
>
>

Involving zalpha-1 sinm(b zr+e) cosv(c zr+g)

>
>
>

Involving zn sinm(b zr+d z) cosv(c zr+g)

>
>

Involving zn sinm(b zr+d z+e) cosv(c zr+g)

>
>

Involving zn sinm(d z) cosv(c zr+f z)

>
>

Involving zn sinm(d z+e) cosv(c zr+f z)

>
>

Involving zn sinm(b zr) cosv(c zr+f z)

>
>

Involving zn sinm(b zr+e) cosv(c zr+f z)

>
>

Involving zn sinm(b zr+d z) cosv(c zr+f z)

>
>

Involving zn sinm(b zr+d z+e) cosv(c zr+f z)

>
>

Involving zn sinm(d z) cosv(c zr+f z+g)

>
>

Involving zn sinm(d z+e) cosv(c zr+f z+g)

>
>

Involving zn sinm(b zr) cosv(c zr+f z+g)

>
>

Involving zn sinm(b zr+e) cosv(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z) cosv(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving rational functions of the direct function, trigonometric and a power functions

Involving sin and power

Involving znsin(c z)

>
>
>

Involving rational functions of sin and power

Involving z sin(2c z)(a sin(c z)+b cos(c z))-n

>
>

Involving functions of the direct function, trigonometric and exponential functions

Involving powers of the direct function, trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(c z)cosnu(a z)

>
>

Involving ep zsinmu(c z+d)cosnu(a z)

>
>

Involving ep zsin(c z)cosnu(a z+b)

>
>

Involving ep zsin(c z+d)cosnu(a z+b)

>
>

Involving ep zrsin(b z2)cosv(c z)

>
>

Involving ep zrsin(b z)cosv(c z)

>
>

Involving ep zsin(b zr)cosv(c z)

>
>

Involving ep z sin(b z)cosv(c zr)

>
>

Involving ep zr sin(b z)cosv(c zr)

>
>

Involving ep z sin(b zr)cosv(c zr)

>
>

Involving ep zr sin(b zr)cosv(c zr)

>
>
>

Involving eb zr+e sin(a zr+q) cosv(c zr+g)

>
>
>

Involving eb zr+d z+e sin(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving sin and rational functions of exp

Involving sin(e z)cosv(c z)(a+b ed z)-n

>

Involving ep zsin(e z)cosv(c z)(a+b ed z)-n

>

Involving sin and algebraic functions of exp

Involving (a+b ed z)beta sin(e z)cosv(c z)

>

Involving ep z(a+b ed z)beta sin(e z)cosv(c z)

>

Involving powers of sin and exp

Involving ep zsinmu(c z)cosnu(a z)

>
>
>

Involving ep zsinmu(c z+d)cosnu(a z)

>
>
>

Involving ep zsinmu(c z)cosnu(a z+b)

>
>
>

Involving ep zsinmu(c z+d)cosnu(a z+b)

>
>
>

Involving ep zrsinm(b zr)cosv(c z)

>
>

Involving ep zrsinm(b z)cosv(c z)

>
>

Involving ep zsinm(b zr)cosv(c z)

>
>

Involving ep z sinm(b z)cosv(c zr)

>
>

Involving ep zr sinm(b z)cosv(c zr)

>
>

Involving ep z sinm(b zr)cosv(c zr)

>
>

Involving ep zr sinm(b zr)cosv(c zr)

>
>
>

Involving eb zr+e sinm(a zr+q) cosv(c zr+g)

>
>
>

Involving eb zr+d z+e sinm(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving powers of sin and rational functions of exp

Involving sinm(e z)cosv(c z)(a+b ed z)-n

>

Involving ep zsinm(e z)cosv(c z)(a+b ed z)-n

>

Involving powers of sin and algebraic functions of exp

Involving (a+b ed z)beta sinm(e z)cosv(c z)

>

Involving ep z(a+b ed z)beta sinm(e z)cosv(c z)

>

Involving products of the direct function, trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(a z)cos(b z) cos(c z)

>

Involving rational functions of sin and exp

Involving ep zcos(d z)cos(e z)/a+b sin(c z)

>

Involving ep zcos(d z)cos(e z)(a+b sin(c z))-n

>

Involving ep zcos(d z)cos(e z)/a+b sin2(c z)

>

Involving ep zcos(d z)cos(e z)(a+b sin2(c z))-n

>

Involving algebraic functions of sin and exp

Involving ep zcos(d z)cos(e z)(a+b sin(c z))beta

>

Involving ep zcos(d z)cos(e z)(a+b sin2(c z))beta

>

Involving rational functions of the direct function, trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(d z)/a+b cos(c z)

>

Involving ep zsin(d z)(a+b cos(c z))-n

>

Involving ep zsin(d z)/a+b cos2(c z)

>

Involving ep zsin(d z)(a+b cos2(c z))-n

>

Involving ep zsin(d z)cos(e z)/a+b cos(c z)

>

Involving ep zsin(d z)cosh(e z)(a+b cos(c z))-n

>

Involving ep zsin(d z)cos(e z)/a+b cos2(c z)

>

Involving ep zsin(d z)cos(e z)(a+b cos2(c z))-n

>

Involving rational functions of sin and exp

Involving ep z(a sinh(e z)+b cosh(e z))-n

>
>
>

Involving ep zsin(d z)(a sin(e z)+b cos(e z))-n

>
>

Involving ep zcos(d z)(a sin(e z)+b cos(e z))-n

>
>

Involving ep z(a+b sinh(e z)+c cosh(e z))-n

>
>

Involving ep zsin(d z)(a+b sin(e z)+c cos(e z))-n

>
>

Involving ep zcos(d z)(a+b sin(e z)+c cos(e z))-n

>
>

Involving ep z(a sin2(e z)+b cos2(e z))-n

>
>

Involving ep zsin(d z)(a sin2(e z)+b cos2(e z))-n

>
>

Involving ep zcos(d z)(a sin2(e z)+b cos2(e z))-n

>
>

Involving ep z(a +b sin2(e z)+c cos2(e z))-n

>
>

Involving ep zsin(d z)(a+b sin2(e z)+c cos2(e z))-n

>
>

Involving ep zcos(d z)(a+b sin2(e z)+c cos2(e z))-n

>
>

Involving ep z(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>

Involving ep zsin(d z)(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>

Involving ep zcos(d z)(a sin2(e z)+b sin(2 e z)+c cos2(e z))-n

>
>

Involving algebraic functions of the direct function, trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(d z)(a+b cos(c z))beta

>

Involving ep zsin(d z)(a+b cos2(c z))beta

>

Involving ep zsin(d z)cos(e z)(a+b cos(c z))beta

>

Involving ep zsin(d z)cos(e z)(a+b cos2(c z))beta

>

Involving algebraic functions of sin and exp

Involving ep z(a sin(e z)+b cos(e z))beta

>

Involving ep zsin(d z)(a sin(e z)+b cos(e z))beta

>

Involving ep zcos(d z)(a sin(e z)+b cos(e z))beta

>

Involving ep z(a+b sin(e z)+c cos(e z))beta

>

Involving ep z sin(d z) (a+b sin(e z)+c cos(e z))beta

>

Involving ep z cos(d z) (a+b sin(e z)+c cos(e z))beta

>

Involving ep z(a sin2(e z)+b cos2(e z))beta

>

Involving ep z sin(d z) (a sin2(e z)+b cos2(e z))beta

>

Involving ep z cos(d z) (a sin2(e z)+b cos2(e z))beta

>

Involving ep z(a +b sin2(e z)+c cos2(e z))beta

>

Involving ep z sin(d z) (a+b sin2(e z)+c cos2(e z))beta

>

Involving ep z cos(d z) (a+b sin2(e z)+c cos2(e z))beta

>

Involving ep z(a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving ep z sin(d z) (a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving ep z cos(d z) (a sin2(e z)+b sin(2 e z)+c cos2(e z))beta

>

Involving functions of the direct function, trigonometric, exponential and a power functions

Involving powers of the direct function, trigonometric, exponential and a power functions

Involving sin, exp and power

Involving zalpha-1ep zsin(c z)cosv(a z)

>
>

Involving zalpha-1ep zsin(c z+d)cosnu(a z)

>
>

Involving zalpha-1ep zsin(c z)cosnu(a z+b)

>
>

Involving zalpha-1ep zsin(c z+d)cosnu(a z+b)

>
>

Involving znep zrsin(b zr)cosv(c z)

>
>

Involving znep zrsin(b z)cosv(c z)

>
>

Involving znep zsin(b zr)cosv(c z)

>
>

Involving znep z sin(b z)cosv(c zr)

>
>

Involving znep zr sin(b z)cosv(c zr)

>
>

Involving znep z sin(b zr)cosv(c zr)

>
>

Involving zalpha-1ep zr sin(b zr)cosv(c zr)

>
>
>

Involving zalpha-1 eb zr+e sin(a zr+q) cosv(c zr+g)

>
>
>

Involving zn eb zr+d z+e sin(a zr+p z+q) cosv(c zr+f z+g)

>
>

Involving powers of sin, exp and power

Involving zalpha-1ep zsinmu(c z)cosnu(a z)

>
>
>

Involving zalpha-1ep zsinmu(c z+d)cosnu(a z)

>
>
>

Involving zalpha-1ep zsinmu(c z)cosnu(a z+b)

>
>
>

Involving zalpha-1ep zsinmu(c z+d)cosnu(a z+b)

>
>
>

Involving znep zrsinm(b zr)cosv(c z)

>
>

Involving znep zrsinm(b z)cosv(c z)

>
>

Involving znep zsinm(b zr)cosv(c z)

>
>

Involving znep z sinm(b z)cosv(c zr)

>
>

Involving znep zr sinm(b z)cosv(c zr)

>
>

Involving znep z sinm(b zr)cosv(c zr)

>
>

Involving zalpha-1ep zr sinm(b zr)cosv(c zr)

>
>
>

Involving zalpha-1 eb zr+e sinm(a zr+q) cosv(c zr+g)

>
>
>

Involving zn eb zr+d z+e sinm(a zr+p z+q) cosv(c zr+f z+g)

>
>